2/28 @Hamamatsu

The effect of the thickness of alumina adhesion to the collection plate on aluminum precipitation

Hiroto Yamakami

B Komurasaki lab. laser reduction group Yamakami-hiroto065@g.ecc.u-tokyo.ac.jp

28/02/2025

Abstraction

- Introduction 01 02 - Method - Results & Discussion - Conclusion & Future work 04

- 03

Contents

01

Introduction

- Backgrounds
- Previous study
- Objective
- Review of Last Lab Seminar
- Summary of introduction

Laser regolith reduction is prospective for ISRU Backgrounds

Regolith reduction for ISRU CW laser ablation

- Regolith reduction helps to realize lunar life

CW laser

Regolith composition

- For lunar base, **In-situ resource utilization(ISRU)** is indispensable

10 million yen/kg (Earth→Moon)

- CW laser is superior in terms of practical application

- Thermally dissociate and reduce alumina by laser

ISRU Middle energy efficiency

Large ablation mass Low Al collection rate

High Al mass on the plate hasn't been achieved **Previous study**

Plate collection is superior in the terms of Aluminum mass >The Al collection mass is not enough for the practical use

1.S. Tanaka (2021)

Thickness of AI_2O_x layer is a key for AI reduction

Al & O.

O diffusion

What happens on the plate?

- Reflection, vaporization, recombination & atomic diffusion

Encouraging O atoms diffusion by thick Al_2O_x layer (& high plate T) \rightarrow Long ablation (& preheating the plate) is a way

1. M. Nakano (2023)

Objective

Mechanism of Al precipitation¹

 Separated Al & O reaches the plate

- Form an oxygen-deficient alumina layer
- O atoms in the middle diffuse to the plate & the surface
- High plate temperature encourages the diffusion

Summary so far

objective - Increasing the thickness of Al_2O_x layer by long time ablation

02

Methods

- Setup & condition
- Experiment procedure
- Analysis method

Overview of experimental set up

Setup & condition

Set up detail & condition

Setup & condition

RotatingAlumina rod

- φ20 mm
- 5 mm thickness
- 1 rpm

Collection plate

- Tantal
- 20 mm × 50 mm

Atmosphere

- Ar
- 1 atm

CW laser

- 1.5 kW, φ2.2 mm
- 10%, 3 min(preheat)
- 100%, 60 s(ablate)

Experiment procedure

Experiment procedure I Fix the Rod & the plate **2** Align the laser **3** Activate the motor **4** Evacuate & inlet Ar **5** Start recording **6** Turn on the laser **7** Stop the laser

Several data was collected

Collection plate

Adhesion mass

Analysis method

H₂ detection

03 Results & Discussion

- Results

2 of 3 experiments confirmed Al on the Ta plate Results

The deposition masses of Al were 26 μg & 42 μg , respectively

× 今回の実験(1.5 kW, 60 s, 946 K)

Not oxygen-deficient alumina, but Al₂O₃ deposited Results

Atomic number ratio of Al & O on the plate was 2 : 3 SEM Enlarged SEM Example of EDX(002)

Atom	Atomic number /%	σ
Al	60.42	0.43
Ο	39.58	0.30
Other	0.0	_

16

Even looked like black or silver, it was Al₂O₃

Al & O ratio of the black & silver parts were also 2:3

SED 15.0kV WD10mm P.C.58 HV x80 $200 \,\mu$ m

Results

04 Conclusion & Future work

- Conclusion
- Future work

Coclusion

3 Experiments with ~1000 K Ta plates were conducted

- 2 of 3 experiments confirmed the existence of Al, **24 μg, 46 μg** respectively
- High adhesion mass(64~217 mg) & Thick adhesion layer(680 μm ~) were achieved
- No oxygen-deficient alumina was confirmed

Conclusion

Future work

Experiments with ~1500 K plates are planned

Future work

Thank you for your attention.

2/28 @Hamamatsu

Effect of electric potential on the adhesion rate of alumina particles to the plate in laser abration

Hiroto Yamakami

🙎 The University of Tokyo, aeronautics & astronautics Eng. M1 **R** Komurasaki lab. Laser reduction group yamakami-hiroto065@g.ecc.u-tokyo.ac.jp

+α Appendix

Explanations of laser ablation & CW laser

What is laser ablation?

- Thermally dissociate and reduce Alumina by laser
- No Carbon, potentially high energy efficiency

CW laser is focused

- CW laser has advantage when it comes to sustainable useage
- Large ablation mass per unit time due to large total energy input

Pulse laser

Appendix

Large ablation mass Low Al collection rate

High Al collection rate Low productivity

Adjusted condition for moderate preheating Setup & condition

Adjusted laser intensity

Optimal laser intensity, 0.32 GW/m², was achieved in every experiments 1.0

Figure 2-17 Ablation rate map with 2.0 kW laser power in various laser intensities and occupancies (i.e., the area ratio of laser spot to alumina rod surface).

Setup & condition

Applying electric potential didn't contribute to the thick Al₂O_x layer

The effect of electric potential on the adhesion rate, which might contribute to the thick Al_2O_x layer, was not confirmed

Review of my former research