

Department of Aeronautics and Astronautics, The University of Tokyo

Komurasaki-Koizumi Laboratory

Title	Refining alumina from ore: Selective metal oxide extraction using laser heating
Author	Lucas-Brian Christen, Masataka Watanabe, Hiroto Yamakami,

- Hokuto Sekine, Kimiya Komurasaki, Hiroyuki Koizumi
- Affiliation PhD Student (D1), Komurasaki & Koizumi Lab. The University of Tokyo
- E-mail christen-lucas-brian@g.ecc.u-tokyo.ac.jp

アルミエネルギーサイクル研究会

2025/02/28

Introduction

Green Transformation

- Aluminum energy cycle was proposed towards a Green Transformation
- Focus of research topics in the aluminum cycle on the Reduction of Alumina
- This presentation: focus on the Production of Alumina

Motivation:

- Large amounts of alumina must be produced first
- Alumina production is harmful to the environment

Lead Question

Are there alternative (green) ways to produce alumina?

Conventional vs. Alternative Alumina Production

- CO₂ emission through transport
 - Bauxite is unavailable in Japan
- Invasive strip mining
- High waste & pollution: "Red mud"

- + Local production
 - Plagioclase 40% of Earth's crust
- + No waste

How can we realize this?

Alumina Production from Plagioclase Mineral

Proposal

- Selective oxide extraction according to their boiling points by Laser Heating
- Stepwise extraction allows refinement of minerals to alumina

 $\begin{array}{l} \mbox{Plagioclase Feldspar} \\ NaAlSi_{3}O_{8}\ -\ CaAl_{2}Si_{2}O_{8} \end{array}$

K ₂ O	623 K
Na ₂ O	2223 K
SiO ₂	2503 K
CaO	3123 K
AI_2O_3	3250 K

Boiling Point

Oxide

Objective

Provide proof-of-concept for the oxide extraction

¹⁾ S. R. Taylor et and S. M. McLennan. "Chemical Composition and Element Distribution in the Earth's Crust." (2003). 5 2

Experiment

Lunar Regolith (Simulant)

Transfer of knowledge

Earth's regolith

Experiment on Lunar Regolith

- Material: Lunar regolith simulant
 - o JSC-2A, FJS-1, EAC-1A
 - o Sintered (SPS) with Tokyo City University (TCU)
- Experiment process
 - Preheating at 150 W followed by 10 s ablation at 1500 W
 - > To Prevent cracking and maximize temperature²⁾
- Analysis methods:

Parameter	Value
Ambient gas	Argon
Ambient pressure	1 bar
Laser type	Fiber, 1080 nm
Laser power	1.5 kW
Laser spot radius	2.5 mm
Laser intensity (avg.)	80 MW/m ²

Results & Discussion

- Emission spectrum & surface temp.
- SEM/EDX of sample surface
- SEM/EDX of collection plate

Emission Spectrum and Surface Temperature

- <u>Emission spectrum</u> reveals the abundance of Na and K in the plume
 - \succ Extraction of K₂0 and Na₂0
 - Thermal reduction

Emission Spectrum and Surface Temperature

- <u>Emission spectrum</u> reveals the abundance of Na and K in the plume
 - \blacktriangleright Extraction of K₂0 and Na₂0
 - Thermal reduction
- Surface temp. reached a maximum of 2800 K
 - \blacktriangleright Above boiling point of SiO₂
 - > Was SiO_2 extracted?
 - > Yes! However, not visible in the spectrum
 - Extraction without reduction

duction	Oxide	Boiling point	Detected
	K ₂ O	623 K	Yes (K)
	Na ₂ O	2223 K	Yes (Na)
Surface Temp : 2000 K	SiO ₂	2503 K	No
Surface remp.: 2800 K	CaO	3123 K	No

SEM / EDX Analysis of the Sample Surface

- Scanning electron microscopy (SEM) with Energy dispersive X-Ray (EDX)
- If oxides are extracted, the relative amount of an element should be decreased → Deficiency

Element	Sample surface (EDX)	JSC-2A (unaltered)	Δ
-	wt%	wt%	-
к	0.30	0.68	-57%
Na	1.92	2.31	-17%
Si	21.31	21.61	-1%

> Deficiency of K, Na & Si was detected

SEM / EDX Analysis of the Collection Plate

- Ta-plate covered with white material
 SEM / EDX
- Composition of white material = plume/vapor composition

Collection plate EDX mapping

> Deposition of mainly **O**, **Si & Na** was detected

> Extraction of Na₂O (Step 1) and SiO₂ (Step 2)

Collection plate photograph

Collection plate SEM

(Col	lection	plate	e EDX

	Element	wt%
	0	40.9 %
	Si	23.3 %
\rangle	Na	12.5 %
	Fe	5.1 %
	K	3.5 %
	Р	2.7 %

Conclusion

Conclusion

✓ Objective is met

- Proof-of-concept for the extraction of Na₂O (Step 1) and SiO₂ (Step 2)
- Next step: Full depletion of Na₂O and SiO₂ using Plagioclase Feldspar material

<u>Outlook</u>

- Extension of the aluminum energy cycle
- Waste-free & Carbon-free production of commercially valuable products:

Thank you for your attention!

Author	<u>Lucas-Brian Christen</u> , Masataka Watanabe, Hiroto Yamakami, Hokuto Sekine, Kimiya Komurasaki, Hiroyuki Koizumi
Affiliation	PhD Student (D1), Komurasaki & Koizumi Lab. The University of Tokyo
E-mail	christen-lucas-brian@g.ecc.u-tokyo.ac.jp

Appendix

Experiment Set-up

Regolith sample

Feldspar Group

Mineral	Alumina content	Aluminum content
Anorthite	35.8 wt%	19.0 wt%
Albite	20.4 wt%	10.8 wt%
Orthoclase	18.3 wt%	9.69 wt%

Mineralogy database, https://webmineral.com/

Lunar regolith & Plagioclase Feldspar

• JSC-2A

o Mare type, low-Ti

• EAC-1A

o Mare type

• FJS-1

o Mare type, low-Ti

• Albite • NaAlSi₃0₈

• Anorthite

o CaAl₂Si₂O₈

Table A1: Oxide composition of the regolith simulants JSC-2A, EAC-1A, and FJS-1 along with Albite and Anorthite, and Earth's upper crust

Compound	JSC-2A	EAC-1A	FJS-1	Albite	Anorthite	Upper crust
-	wt%	wt%	wt%	wt%	wt%	wt%
K ₂ O	0.80	1.30	1.01			2.80
Na ₂ O	2.75	2.75	2.75	11.91	0.56	3.27
SiO ₂	47.50	43.70	49.14	67.39	44.40	66.62
CaO	10.50	10.80	9.13	1.07	19.20	9.79
TiO ₂	1.50	2.40	0.19			0.64
AI_2O_3	15.00	12.60	16.23	20.35	35.84	15.40
FeO	7.25	-	8.30			5.04
MgO	9.00	11.90	3.84			2.48

J. Schleppi et al, "Manufacture of glass and mirrors from lunar regolith simulant" (2019);

Mineralogy database, https://webmineral.com/;

Rudnick and Gao, "Composition of the continental crust" (2003)

Preheating

Bayer Process

Dodoo-Arhin et al, *Case Studies in Construction Materials, (2017)* http://dx.doi.org/10.1016/j.cscm.2017.05.003

Abundance / Mining sites of Bauxite Ore

British Geological Survey, URL: <u>http://www.bgs.ac.uk/mineralsuk/commodity/world/home.html</u>, Accessed on Feb. 27th 2025

Sintering Conditions

- The samples were sintered using Spark Plasma Sintering using 4.5 g of simulant
- Max. pressure: 20 MPa, max. temperature: 950 K

	FE MUNITUR			a :	<u>32, 6°⊂</u>		<u>6kN</u>		24/6/61
	No. RECTPE NAME								
1	12 MOON		100						
(d	1								
	STEP		START	1		3	4	5	
200	SPS TIME	(min)	/	1.0	5.0	3.0	2.5	5.0	0.1
2	TEMPERATURE	(°C)	570.0	570.0	600.0	900.0	950.0	950.0	20.0
	_ ∩P	(%)		20.0	20.0	20.0	20.0	20.0	20.0
	I	(sec)	/	20.0	20.0	20.0	20.0	20.0	20.0
	D	(sec)	100	10.0	10.0	10.0	10.0	10.0	10.0
	SPS OUTPUT LOWER	(%)		5.0	10.0	10.0	10.0	10.0	0.0
	SPS OUTPUT UPPER	(%)		10.0	20.0	50.0	50.0	50.0	50.0
	PRESSURE	(KN)	0.8	0.8	0.8	0.8	0.8	0.8	0.8
	HEAT-UP WAIT	(°C)		ENABLE	ENABLE	ENABLE	ENABLE	ENABLE	ENABLE
	CONTROL			END/LINK	END/LINK	END/LINK	END/LINK	END/LINK	
	- 154								

