

2017年3月23日 科研費S ミーティング

様々な雰囲気ガス中における レーザー放電の1次元進展現象

小紫研究室 松井康平

- ♦ 研究背景
 - 繰り返しパルス型レーザー推進
 - レーザー放電進展現象
 - 研究目的
- ◆ 実験装置
 - 可視化光学系
 - 集光光学系
- ◆レーザー放電実験
 - 観測結果
 - モデルとの比較
- ◆ユゴニオ解析
- ◆結言

研究背景

2017/3/28

>プラズマが電離を繰り返し進展
→ 超音速の進展 ⇒ 衝撃波

→ 定積加熱

→ 圧力上昇(エネルギー変換)

<u>進展速度</u>が推進器の性能を決定する

[2] K. Shimamura, et al., IEEE Tras. Plasma Science, vol. 43, 10, 2014. 先行研究 - 光電離モデル $U = \frac{\nu_i l}{\ln(n_{\rm e,l}/n_{\rm e,0})}$ 電離周波数 n_{e.l}:波面前方の電子数密度 レーザー吸収長 n_{e.0}: バルクの電子数密度 Plasma Plasma Plasma (a) Photon Emission (b) Photoionization (c) Avalanche Ionization - 電子拡散モデル(マイクロ波放電) [3] V. Shibkov et al., Technical Physics, vol. 50, 4, 2005. $U = 2\sqrt{D_a v_i}$ Plasma Plasma 電離周波数 v_i (a) Electron Diffusion (b) Avalanche Ionization 双極性拡散の拡散係数 D_{a} 第2回「高エネルギー電磁ビームに誘起される放電 2017/3/28 7

「の工学的応用」研究会

実験装置

2017/3/28

先行研究:レーザー径の影響

[1] K. Matsui, et al., Vacuum, vol. 136, 2017.

- ◆アイリスによってプラズマの自発光をカット ◆ □ (後 士 は へ て 生 ⊑ 敵 に へ ね は て 訊号
- ◆ Target 後方は全て焦点距離に合わせて設置

倍率	2/3	5/6
焦点距離 f ₂	300 mm	300 mm
焦点距離 <i>f</i> 3	200 mm	250 mm

◆アルゴン気中での放電実験(D = 5.1 mm)

t = 2950 ns

伝播を観測できない

よりターゲットから離れた 位置で伝播を観測した

集光光学系詳細

光学素子	焦点 距離 f	等価直径 D
円筒軸外し放物面鏡×2	800 mm, 400 mm	9.1 mm
円筒軸外し放物面鏡×2	500 mm, 400 mm	7.2 mm
平凸レンズ	317.5 mm	5.1 mm

高速度ICCDカメラ設定

設定項目 設定値	
フレームレート	$10 \sim 25 \times 10^{6}$
ゲイン	30 ~ 70
露光時間	10 ~ 30 ns

レーザー放電の観測

◆酸素気中, D = 5.1 mmでの進展

項目	設定値	
露光時間	50 ns	
ゲイン	30	

◆窒素気中の進展

2017/3/28

◆波面前方への電子の供給原理

- ストリーマ放電モデル - 電子拡散モデル
$$U = \frac{\nu_i l}{\ln(n_{e,l}/n_{e,0})} \qquad U = 2\sqrt{D_a \nu_i}$$

◆ 電離周波数 $\nu_i = \frac{\alpha_{IB}S}{\varepsilon_i}$: 電離周波数 ν_i はレーザー強度 S の1次関数 → 気体種によらず b = 0.5 or 1.0 ×

 D_a やlの変化を含め、種々の影響の結果としてbが変化する

反応種を考慮して n_e, T_e の検討が必要

ユゴニオ解析

2017/3/28

p-v 線図の交点から波面後方の状態を推定できる

・ーザー強度に対する圧力上昇の関係

◆レーザー放電進展速度のレーザー強度依存性 $v = aS^b$

	Argon	Helium	Nitrogen	Oxygen
a	1.43 ± 0.0968	0.0102 ± 0.00715	0.380 ± 0.0507	0.325 ± 0.0361
b	0.228 ± 0.0144	1.18 ± 0.122	0.440 ± 0.0268	0.518 ± 0.0214

◆進展速度を数値計算によって模擬する際に、電子数密度、 電子温度、反応種の検討が必要

◆ *S* = 5 ~ 30, 200 ~ 500 GW/m²においてはアルゴンが, *S* = 30 ~ 200, 500~ GW/m²においては大気が, 圧力最大

ご清聴ありがとうございました

2017/3/28