第3回「高エネルギー電磁ビームに誘起される放電とその工学的応用」研究会 第5回 マイクロ波ロケット研究会, 13-14/Sep./2017 量子科学技術研究開発機構 六ヶ所核融合研究所 セッション | ジャイロトロンとミリ波放電, 14:40-15:00, 13/Sep./2017

UNIVERSITY OF

高周波ジャイロトロンにおける電子ビームの高性能化と制御

Generation and Control of High-Quality Electron Beams in High-Frequency Gyrotrons

<u>山口裕資</u>, 立松芳典, 福成雅史, 斉藤輝雄 福井大学 遠赤外領域開発研究センター

- 内容 多周波発振ジャイロトロン(FU-CW-GV)
 - ラミナー電子流の形成と空間電荷効果の抑制
 - ・ まとめ -1
 - ・ ジャイロトロン遠隔操作機器の整備
 - ・ ヒータ電流の PID 制御実験
 - ・ まとめ -2

段階的な周波数可変

共振器部の磁場を変え, サイクロトロン周波数を調節

周波数の異なる共振器モードへ, 電子ビームを選択的に結合

Mode	Freq.	B _C	R _B
	[GHz]	[T]	[mm]
TE _{10,6}	265.0	9.71	1.93
TE _{9,6}	253.6	9.29	1.81
TE _{8,6}	242.1	8.86	1.69
TE _{7,6}	230.4	8.44	1.55
TE _{9,5}	224.7	8.23	2.05
TE _{8,5}	213.4	7.82	1.91
TE _{7,5}	202.0	7.39	1.77
TE _{6,5}	190.5	6.97	1.61
TE _{7,4}	173.2	6.35	2.07
TE _{6,4}	161.9	5.94	1.89

空間電荷効果の抑制: ラミナー電子流の形成

各軌道の起点が異なる

→ 磁力線に垂直な断面内で, 各軌道の回転位相が異なる. 電流放出面と磁力線の成す角θ_Εを増加し, 出発点の軸方向のずれを小さくする.

> V. N. Manuilov et al., Radio Eng. Electronic Phys., **23**, 111-119 (1978)

ラミナー性の 調整

一磁力線に垂直な断面内 –

各軌道が, 同じ 回転半径と 回転位相を持つ

共振器における電子ビーム特性の比較

13/ Sep. / 2017

7 山口裕資,

第3回

「高エネルギー電磁ビームに誘起される放電とその工学的応用」研究会

共振器における電子ビーム特性

まとめ -1

Sub-THz 帯 多周波数発振ジャイロトロン (FU CW GV)の 電子銃を開発した.

空間電荷効果に起因する速度拡がり $\Delta \alpha$ を抑制する為, <u>ラミナー流を形成する電極構造</u>を作成した.

広い動作領域において機能し,

全設計モードに対し低 $\Delta \alpha$ を実現した.

発振試験の結果より

- - 全設計モード(周波数:162~265 GHz)の
 安定発振(0.7~1.3 kW)を観測した。
- 電子ビーム特性の変化に対し,動作範囲と出力変化が, 計算結果と定性的に良く一致した.

最後に
 非常に汎用性の高い電子銃であり、他の管への適用も可能.
 FU CW GIA (203 GHz) にも採用し、高出力化に成功している.

ジャイロトロン制御の遠隔操作機器の整備

- ジャイロトロン運転の概要
 - 電子管の構造
 - 駆動装置群の運転体制の現状と課題
- 遠隔操作系の構築
 - 駆動装置群 ~ ADC (~ 計算機)の接続
 - 緊急停止機構、インタロックの作成
 - LabVIEW を用いたインタフェースの構築
- 操作補助機能の例
 - PID 制御の導入
 - 長時間の安定化
 - 目標値の追随性
 - 外乱に対する耐性

ジャイロトロンの運転体制の現状と課題

<u>ジャイロトロンの運転</u>

- 電子管の真空排気
- 強磁場の発生
- 高圧,大電流電子ビームの生成
- 出力波の管理
- 状態遷移の計測,監視,記録
- → 複数の人員で協力して操作

<u>課題</u>

× ジャイロトロン発振の安定維持
 × 突発的な系の不安定化への対処
 × 電子管の損傷回避機能の付加
 特にインタロック等,安全装置の整備
 が不充分

<u>本研究の目的</u> → 運転の自動化, ユーザーフレンドリーな 操作系の構築を目指す.

遠隔操作機器の組み込み

13/ Sep. / 2017 山口裕資, 第3回「高エネルギー電磁ビームに誘起される放電とその工学的応用」研究会

17/25

インタフェースの構築(諸量の時間変化の監視)

ジャイロトロン発振の自動制御に向けて

発振周波数,出力) 調節,長時間の安定制御の自動化が期待される.

Side-view

熱カソード

PID 制御による電流(IC)の自動調節

Top-view

ヒータ点灯

- m(t): 操作量(ヒータ電流:IH) m₀: 操作量の初期値
- e(τ): 制御偏差 (IC の目標値 - 現在値)

Hの時間変化率に制限有(<0.08 A/s)

目標値が時間変化する場合の IC の追随性

PID 制御による電流(IC)の自動調節4

長時間の安定化制御(外乱がある場合) 発振パルス幅を伸長 → コレクタからのガス放出が増大し真空劣化

→ カソード表面が汚染され,熱電子放出が阻害される.

PID 制御 OFF

まとめ -2

ジャイロトロン制御の自動化を目指し、遠隔操作および 状態遷移を監視するための機器を構築した.

多チャンネルのアナログ – デジタル 変換器 (ADC)を導入, 各種の電源装置群を計算機へ接続し, 遠隔操作を可能とした.

▶ 問題発生時に、ジャイロトロン発振を自動停止する機能を作成した.

▶ 運転員一名で全ての操作, 監視が可能となる制御盤を構築した.

複雑な操作を補助する機能を追加し、よりユーザフレンドリーな 装置とした。

今後の課題

より高速の ADC の導入, PID 制御の最適化により, 制御の高速化を図る.