多孔熱交換型レーザー推進機を用いた超小規模打ち上げシステムの実現性解析

Feasibility study of very-small-scale launch systems using porous heat-exchanger laser propulsion

森 浩一（名古屋大学）
Alternative: Laser – why?

Laser vs Microwave (MW)
Focusing capability
- Compact vehicle
- Weight, Front area

MW (2.45GHz): $\lambda \sim 1\text{cm}$
Laser (Nd:YAG): $\lambda \sim 1\mu\text{m}$
Laser - Smaller spot
100kw-Laser Launch System (LLS)

Element
- **Guidance & Control**
 - Trajectory plan
 - Beam riding
 - Actuator
 - Light weight

- **Structure**
 - Light weight
 - Strength

- **Propellant tank**
 - Sizing
 - Light weight
 - Cryogenic

- **Engine**
 - Principle
 - Nozzle flow
 - Nozzle cooling
 - Pump
 - Optical confinement

- **Collimation optics**
 - Optical design
 - Cooling
 - Air turbulence
 - Exhaust interference

100g payload

1kg vehicle (sub-meter size)

100 kw laser
New LHX Engine Model #1

- 4kW Fiber Laser, $\lambda=1080\text{nm}$, $\varphi=18\text{mm}$
- Optical Window (BK7)
- Pressure Sensor
- Oscilloscope
- $\phi_p=40\text{mm} \ (\text{Ch1})$
- $\phi_p=19\text{mm} \ (\text{Ch2})$
- Porous Carbon
- Hot GHe Nozzle
- Flowmeter
- Load cell
- PC
- Chamber (SUS)

2017/9/15
Summary

1. New concept of Porous Laser / Heat exchanger Rocket is proposed. The model thruster has been tested using 4kW fiber laser in NADEX Inc..

2. GHe was heated upto 1500K, which corresponds to the specific impulse in vacuum at 407 s.

3. Radiation from porous heat exchanger is found major factor that reduce the thermal efficiency. New design to suppress the radiative loss is necessary.
2017 Target

Objective
- Launch system concept study
- Propulsion performance

Subject
- Temperature to 3000K
- Radiation confinement
- Cooling design

Method
- Concept study WG
- Laser Experiments
- Thermo-Fluid-Radiation simulation in porous media
Plan to 2020

2019: Indoor launch
- Light-weight rocket design

2020: Outdoor launch
- Record break (>100m)
- Beam control
- Safety assessment