LSD前方での電子生成の ガス種依存性のCFD調査 (予定含む)

葛山浩、佐々木絢香(山口大·院)

第3回「高エネルギー電磁ビームに誘起される放電とその工学的応用」研究会
/ 第5回マイクロ波ロケット研究会

目的

LSDを維持するための電子生成機構の解明

- 1. 方法
 - 1次元の流体計算(CFD)
 - 多温度熱化学非平衡
 - 先行輻射電子生成
 - レーザー吸収帯を輻射平衡と仮定し、吸収帯前面からプラン ク放射
- 2. これまでの研究の紹介
 - 空気のLSD
- 3. ガス種依存性の調査の進捗紹介
 - アルゴンのLSD
 - ヘリウムのLSD(取組中)・酸素のLSD(予定)

研究動機

- C-J velocity V_{ci} is the theoretical detonation velocity.
 - LSD is not maintainable when the laser absorption front velocity V_a is smaller than V_{cj} .
- Measured V_a agree with V_{cj} in S>0.2 MW/cm²= $S_{th}^{1D \text{ Exp.}}$
- Computed V_a becomes slower than V_{cj} in S<30 MW/cm²= $S_{th}^{1D \text{ CFD}}$

The CFD w/o radiation cannot reproduce the experimental S_{th} .

LSD Structure in CFD w/o Radiation

4/12

- In S=40 MW/cm² (Complete LSD)
 - Laser absorption front touches the shock front.
 - LSD is maintainable because the two waves propagates together.
- In S=10 MW/cm² (Incomplete LSD)
 - Absorption front is away from the shock front
 - LSD is not maintainable because the distance becomes large with time.

Simple Black Body Emitter Model

- Laser absorption front can be assumed to be a black body emitter of $T_{eq, B}$.
- Precursor electrons are produced by integrating the radiative transfer from the laser absorption front.

$$\frac{dI_{s,\nu}}{dl} = -\kappa_{s,\nu}I_{s,\nu} \text{ from } I_{s,\nu} = I_{B,\nu}$$

 $(\kappa_{s,\nu}$: photoionization absorption coef. of neutral *s* species at freq. ν)

At a distance *l* from the laser absorption front

Precursor electron production rate:

-
$$\dot{n}_e^p = \sum_s \iint_{\nu_{s,i}}^{\infty} \kappa_{s,\nu} I_{s,\nu} d\nu dl$$
, $(\nu_{s,i}: \text{ ionization freq. of s species})$

• Radiative electron heating rate (Fujita et al. AIAA 2001-2765):

$$- \dot{e}_{e}^{p} = \sum_{s} k_{B} \dot{n}_{e,s}^{p} T_{p,s} , \quad (T_{p,s} = \frac{1 + 4\gamma_{s} + 6\gamma_{s}^{2}}{1 + 2\gamma_{s} + 2\gamma_{s}^{2}} T_{eq,B}, \quad \gamma_{s} = k_{B} T_{eq,B} / h \nu_{s,i})$$

Impact of Radiation on LSD

- Radiation produces a lot of electrons in the precursor region.
 - n_e =10²³ m⁻³ and T_e =3,000 K at the shock front.
- LSD is still incomplete
 - Absorption front separates from the shock front.
 - Precursor electrons are lost by active recombination behind the shock front.
 - The active recombination may result from an underestimation of T_e (3,000 K) at the shock front.

Comparison between 2 and 3 Temp. Model

- T_e of 3. temp model in the precursor region becomes larger than that of 2 temp. model.
- The increase of T_e is only 1,000-2,000 K
- n_e distribution and its recombination behind the shock front remain unchanged.
- LSD is still incomplete: the present CFD cannot reproduce the LSD threshold.

先行領域の電子生成源

Densities of ion species and electron (computation with radiation)

- 先行電子の生成源は酸素分子
- 化学種により先行輻射の電子生成は違う
 LSD閾値のガス依存性は大きいかも

9/12 松井・島野さん・小紫先生のLSD伝播実験

このグラフには載っていっていないが、純窒素・純酸素の場合は、空気とほぼ同じだったはず

AirとArgonの計算

- ・ 空気: CFDの V_a <実験の V_a と V_{cj} (特にLSD閾値付近で)
- アルゴン: CFDと実験値のV_aはV_{ci}とよく合う
- ・今後の予定
 - ガス種で傾きに違いがでる理由を詳しく調べる - AirではLSD閾値付近がCFDで再現出来ない理由

他のガス種について(取組中)

• He(取組中)やO2(予定)のLSDを調べる予定

11/12

まとめ

- 1Dの流体CFD+簡単な輻射モデルで、LSD速度V_aのレーザー強度Sの依存性を調べた
 空気
 - Sが小さい時は、CFDの V_a は実験値より小さい
 - Sが小さい時は、CFDと実験値の V_a は一致する
 - アルゴン
 - CFDと実験値の V_a は一致する
 - ヘリウム、純酸素、純窒素 > 取組中
- 今後
 - データを解析し、メカニズムの解明