Comparison of Measured and Computed Plasma Densities at Laser Supported Detonation Waves

Session number: C-2

Keisuke Kanda¹⁾
Theo Roussel¹⁾
Kohei Matsui¹⁾
Kimiya Komurasaki¹⁾
Hiroshi Katsurayama²⁾
Hiroyuki Shiraishi³⁾

- 1) The University of Tokyo
- 2) Yamaguchi University
- 3) Daido University

Background

Laser Supported Detonation Wave

LSD velocity depends on gas species

^{1.} Shimano, T., Ofosu, J. A., Matsui, K., Komurasaki, K., and Koizumi, H.:

"Laser-induced discharge propagation velocity in helium and argon gases" *Trans. Japan Soc. Aero. Space Sci.*, **60**, 6 (2017), pp. 371-378.

Numerical model that determines LSD wave velocity is yet to be found

Not completely determined by Fluid dynamics Actual velocity is determined by Discharge Physics ?

Objective

Measure $n_{\rm e}$ distribution of plasma and find out how to improve the current numerical model

Experimental Setup

Overview of experimental setup

Spectroscopy optics

CO₂ Laser focusing optics

Stark broadening analysis for n_e

Stark bradening $\Gamma = W^* n_e$

Results and Discussion

LSD velocity in 1.0 atm He

1. Shimano, T., Ofosu, J. A., Matsui, K., Komurasaki, K., and Koizumi, H.:

"Laser-induced discharge propagation velocity in helium and argon gases" Trans. Japan Soc. Aero. Space Sci., 60, 6 (2017), pp. 371-378.

LSD velocity in 0.2 atm Ar

2) K. Matsui, et al, "The effect of gas species on propagation velocity of laser-induced discharge in laser propulsion," Trans. JSASS (2017)

Spatial distribution of $n_{\rm e}$ (Ar)

Cumulative ionization

2019/3/13

Numerical models in millimeter-wave discharge consider cumulative ionization Ex)Ionization of neutral particles excited by photons

Velocity increased in the millimeter-wave discharge

3. Nakamura, Y., *et.al.:* "Role of Photon-Carrying Excited-Neutral-Particles on Ionization Front Propagated in Millimeter Wave with Under Critical Intensity", *IAPS Meeting*, *P-18*, 2019.

Conclusion

- Measured U_s was higher than computed U_s in all conditions
- Previous measurements of U_s in helium were conducted in the LSC region
- Distribution of n_e within the wave front is yet to be measured
- Ionization process from the precursor to the shock wave should be reconsidered
- Consideration of cumulative ionization from excited particles may increase U_s as in millimeter-wave discharge

Thank you for your kind attention

The University of Tokyo Keiuske Kanda k-kanda@g.ecc.u-tokyo.ac.jp

Maximum n_e in 0.2 atm Ar

Maximum $n_{\rm e}$ in 1.0 atm He

