"Visualization of 170 GHz Millimeter-Wave Discharge in Atmosphere" by T.Yamaguchi

 The 26th Annual Meeting of IAPS / The 6th Workshop on Discharge Induced in High-Energy Electromagnetic Beam -

Visualization of 170 GHz Millimeter-Wave Discharge in Atmosphere

Toshikazu YAMAGUCHI*,

Kimiya KOMURASAKI**, Yasuhisa ODA*** and Keishi SAKAMOTO***

*Edogawa University, **The University of Tokyo

***National Institutes for Quantum and Radiological Science and Technology (QST)

Beamed-Energy Propulsion (BEP)

Advantages of Detonation-type BEP

	Laser (CW/RP)	Microwave (CW/RP)	
Thermal	CW: Laser-sustained plasma	CW: Microwave thermal rocket	
Ablation	RP: Laser ablation		
Detonation	RP: Laser detonation	RP: Microwave Rocket (MR)	
Beam source: <u>gyrotrons</u> Vehicle: <u>beam-focus reflector</u> + <u>tube</u> + <u>beam recei</u> Air-breathing (ambient propellant feed)		<u>ector</u> + <u>tube</u> + <u>beam receiver</u> propellant feed)	
Advantages as a future low-cost launcher			

Air breathing	No propellant is needed
system	in dense atmosphere High payload ratio
Pulsed-detonation operation	No turbo pump leads One-time use of simple vehicle structure simple/cheap vehicles
Beam source	Reused/easy-maintained
on the ground	expensive/complex system Cost reimbursement
Mar. 09, 2019	IAPS Meeting 2019 / Workshop on HEMEB in Okinawa

Energy conversion of Microwave Rocket

IAPS Meeting 2019 / Workshop on HEMEB in Okinawa

Millimeter-wave discharge and Shock wave

Structural change of millimeter-wave (mmw) discharge plasma is studying under different mmw power density conditions.

Low power density

High power density

Plasma and Shadowgraph images (IAPS 2017)

Exposed images

Shadowgraph images

Visualization of 170GHz Discharge in Atmosphere

- IAPS 2019 : Shadowgraph imaging at focal area
- Objectives : Observe mmw discharge at high power density condition and Measure shock wave velocity
- Recent presentations
 - IAPS 2018 : Low ambient pressure
 - Plasma image, Pressure

 Performance saturation with filamentary structure
 - IAPS 2017 : High power density beam
 - Shadowgraph, Pressure -> Plateau pressure saturation
 - IAPS 2016 : Beam profile conversion
 - Plasma image, Pressure -> Impulse enhancement

convex

lens

Visualization area

Millimeter wave

"Visualization of 170 GHz Millimeter-Wave Discharge in Atmosphere" by T.Yamaguchi

Results : Shadowgraph images

Mar. 09, 2019

IAPS Meeting 2019 / Workshop on HEMEB in Okinawa

"Visualization of 170 GHz Millimeter-Wave Discharge in Atmosphere" by T.Yamaguchi

Non-spherical shape of the shock wave

A-line (focused)

B-line (main beam)

Local power density decreases along A-line.

Local power density is almost constant on B-line.

IAPS Meeting 2019 / Workshop on HEMEB in Okinawa

IAPS Meeting 2019 / Worksnop on Hemes in Okinawa

"Visualization of 170 GHz Millimeter-Wave Discharge in Atmosph

Propagating velocity at transition

Shock front

Microwave.

Differential between two fronts under the distance

IAPS Meeting 2019 / Worksnop on Hemeb in Okinawa

Agreement with one-dimensional simulation

Summary *E-mail : tyamaguc@edogawa-u.ac.jp*

- Atmospheric MMW discharge caused by 170GHz gyrotron was observed at focal area by Shadowgraph imaging.
- Propagating shape of shock wave was not spherical, but dependent on the shape of the heated plasma front which absorbs mmw beam energy.
- Transition from Driven structure to Detached structure was observed due to the decrement of the local power density.
- Propagating velocity of the shock wave was about 800m/s at the transition, which agrees with computational study of one-dimensional propagating model.

Thank you for your kind attention!