Mechanism for Plasma Propagation Induced by Subcritical Millimeter Wave Based on Detailed Chemical Model

Kanta Hamasaki, Masayuki Takahashi, Naofumi Ohnishi Department of Aerospace Engineering, Tohoku University Email : <u>hamasaki@rhd.mech.tohoku.ac.ip</u>

Introduction

Microwave rocket has been proposed as a space transport system capable of drastically reducing launch cost. In this system, a high-intensity millimeter wave beam is supplied from the ground as an energy source, and a thrust is acquired due to a rapid gas heating induced by millimeter-wave discharge. Flight experiment of the microwave rocket was conducted using a 1-MW, 170-GHz pulsed gyrotron [1]. A numerical simulation based on a computational fluid dynamics and plasma transport model reproduced a formation of the plasma structure observed in the experiment at a moderate to high subcritical condition $0.25 < E_{0,rms}/E_{cr} < 1$, where $E_{0,rms}$ is the root-mean-square electric field of the incident millimeter wave and E_{cr} is the threshold electric field for triggering the gas breakdown [2]. However, the breakdown was not maintained at a low-subcritical condition of $E_{0,rms}/E_{cr} < 0.25$. In this study, a one-dimensional calculation is conducted using a detailed chemical reaction model in atmospheric air coupled with the conventional model to reproduce the discharge phenomenon obtained at the low-subcritical condition.

Numerical modeling

Fig. 1. Conceptual diagram of microwave rocket.

Fig. 2. Photograph of MMW discharge [1].

- Conventional model (without detailed chemical reaction)
 - Assuming that a composition ratio of N_2 and O_2 are constant as $N_2: O_2 = 0.8: 0.2$.
 - Considering only 17 electron collision reactions (e + $aA \rightarrow e + cC$).

Improved model (with detailed chemical reaction)

• Dry air plasma is composed of 56 molecules $N_2(\nu=0-45)$, O_2 , O_3 , NO, $N_2(A^3$, B^3 , $a^{\prime 1}$, C^3), $O_2(a^1$, b^1 , 4.5eV), 6 atoms N, O, $N(^2D$, 2P), $O(^1D$, 1S), 14 ions N^+ , N_2^+ , N_3^+ , N_4^+ , O^+ , O_2^+ , O_4^+ , NO^+ , $O_2^+N_2$, O^- , O_2^- , O_3^- , O_4^- , NO^- , and e.

• Considering 331 reactions including electron collision reactions ($e + aA \rightarrow e + cC$), thermal reactions ($aA + bB \pm \varepsilon_{gas} \rightarrow cC + dD$), and reaction involving excited species.

Under the moderate-subcritical condition $(0.25 < E_{0,rms}/E_{cr} < 0.66)$

1.8

мм

1.6 2 1.4 1.2 1.8 N/N 1 N/N0 1.6 d 0.8 0.6 1.4 0.4 1.2 0.2 0 2.5 0 0.5 1 1.5 2 3 x/λ Fig. 4. Distributions of a neutrals number density N (blue), and a pressure p (orange) at E0,rms/Ecr=0.41, t=4.7 μs. 10²⁴ 2 MMW 1.5

2.2

Fig. 6. Distributions of electron density source via several ionization processes S_{er} (solid line), and total electron density source S_e (dot line) at $E_{0,rms}/E_{er}=0.41$, t=11.7 us.

A discharge front propagates toward a millimeter-wave source (Fig. 3), and a shock wave is driven while increasing the pressure to 1.5-2 atm which is the same value as the experiment [1] (Fig. 4). An electron temperature T_e increases with a decrease in a neutrals number density N by a strong expansion wave, and the discharge front is driven at a position where an T_e peak (Fig. 5) due to a direct ionization and an associative ionization in a collision between O and N₂(²P) (Fig. 6). A propagation speed of the discharge front is evaluated as 197 m/s at $E_{0,\text{rms}}/E_{\text{cr}} = 0.41$, which is about one fifth of the experiment value [1].

Under the low-subcritical condition $(E_{0,rms}/E_{cr} < 0.25)$

Fig. 7. Distributions of an electron number density n_e (black), and an effective electric field E_{eff} (red) at $E_{0,rms}$. E_{er} =0.08, t=49.4 μ s (dot line), 88.2 μ s (solid line).

Fig. 9. Distributions of electron temperature T_e (blue), gas temperature T_g (red), and reduced electric field E_{eff}/N (magenta) at $E_{0,rms}/E_{er}=0.08$, t=49.4 µs.

(blue), and a pressure p (orange) at $E_{0,rms}/E_{cr}=0.08$, t=49.4 µs.

Fig. 10. Distributions of electron density source via several ionization processes S_{er} (solid line), and total electron density source S_e (dot line) at $E_{0,ms}/E_{cr}=0.08$, t=49.4 µs.

The discharge development in the direction of the millimeter wave source is reproduced even under the low-subcritical condition (Fig. 7). The discharge is not maintained by the direct ionization process since the electron temperature T_e does not increase sufficiently (Fig 9). Therefore the discharge front is driven by a thermal ionization and the associative ionization at a position where translational temperature of a neutral particle T_g is increasing to about 6000 K (Fig. 10). The propagation speed of the discharge front is evaluated as 57 m/s at $E_{0,\text{rms}}/E_{\text{er}} = 0.16$, which is half of that observed in the experiment [1].

References : [1] Y. Oda et al., Journal of Applied Physics, Vol. 100, 113307 (2006). [2] M. Takahashi et al., AIP Advances, Vol. 17, 055206 (2017).