レーザー支持デトネーションの ユゴニオ解析

講演番号: B-3

神田 圭介¹
Jean-Luc Leonetti²

○小紫 公也¹

小泉 宏之¹

- 1) 東京大学
- 2) パリエ科高等学校

研究背景

レーザー推進の推力生成原理

LSD波伝播速度の1次元CFDと測定結果の比較

Ar 1.0 atmにおける1次元CFDと 実験による進展速度の比較

1次元CFD解析

- ・Navier-Stokes (電子拡散・熱伝導あり)
- 実在気体効果(乖離、電離、励起反応、

輻射など) 考慮

・レーザーは波面で100%吸収

実験では

- ・レーザー吸収係数が小さい?
- ・ユゴニオ関係は成り立っている?
- [1] 葛山浩, 石田樹, "希ガス中を伝播するレーザー支持デトネーションの数値解析" 第63回宇宙科学技術連合講演会, 3R05, 久留米, 2019年11月.
- [2] 白石裕之,"現実的な照射強度変化に対するレーザー支持爆轟波(LSD)の非定常解析"第63回宇宙科学技術連合講演会, 3R03, 久留米, 2019年11月.

測定されたLSD伝播速度ではユゴニオ解がない

ユゴニオ解析によるAr 1.0 atm, 300 GW/m²でのp-v線図(U_sは実験値)

解(交点)が存在するには、レーザーから爆風波へのエネル ギー変換効率 η_{trans} が数%である必要があると示唆される

Rayleigh

Hugoniot

爆風波変換効率 η_{trans}

- ・LSD終了後の爆風波の膨張速度を計測し爆風波エネルギーを算出
- ・LSD過程のエネルギー変換効率=電力変換効率の時間平均
- ・実在気体効果(励起・乖離・電離・輻射・透過など)を表したもの

研究目的

爆風波エネルギーを計測し、ユゴニオ関係を検証したい。

実験手法と解析

爆風波変換効率 η_{trans} の推算方法

回転楕円形に断熱膨張する爆風波にSedovの自己相似解をフィッティングすると、爆風波の運動エネルギーは以下のように表せる

$$E_{Blastwave} = \frac{25}{4} \rho_1 \zeta^{-5} D^2 R_y R_x^2$$

 $D = \frac{dR_y}{dt} = \frac{dR_x}{dt}$

 $ho_{\!\scriptscriptstyle 1}$:雰囲気気体の密度

 ζ : 定数 (比熱比に依存)

D·衝撃波の速度

衝撃波の時間変位から R_{x} , R_{y} ,D求めて E_{blast} を計算

 η_{LSD} も写真から判断

[1] 遠藤琢磨 "デトネーションの熱流体力学2", 理工図書 (2011)

TEA-CO2レーザーと1次元的集光系

レーザー集光系およびチャンバーの概略図

衝撃波可視化のためのシュリーレン光学系

結果と考察

1.0 atm Airにおける爆風波のx-t線図

$oldsymbol{\eta}_{LSD}$	$oldsymbol{\eta}_{trans}$
0.92	0.45

Air 1.0 atm レーザー発振後 4500 nsでの シュリーレン写真

LSD終了はレーザー発振の3.4 µs後

Air 1.0 atm における爆風波のx-t線図時間はレーザー発振からの時間

1.0 atm Arにおける衝撃波のx-t線図

$oldsymbol{\eta}_{LSD}$	$oldsymbol{\eta}_{trans}$
0.96	0.48

Ar 1.0 atm レーザー発振後 5500 nsでの シュリーレン写真

LSD終了はレーザー発振の4.5 µs後

Ar 1.0 atm における衝撃波のx-t線図時間はレーザー発振からの時間

爆風波変換効率を考慮したユゴニオ解析

爆風波変換効率を考慮したユゴニオ解析による Ar 1.0 atm, 300 GW/m²でのp-v線図

実験結果から

空気でも同様の 結果

横方向エンタルピー流出を考慮した解析

ユゴニオ解析によるAr 1.0 atm,

300 GW/m²でのp-v線図

 $q = \frac{1}{\rho_1 u_1} - n_{lateral}$ η_{trans} $\eta_{Abs} = 0.48$ $h_{lateral} = 0.815 \times S/(\rho_1 u_1)$ でユゴニオ解析が成立

軸対称系での中心軸は特異点なので $h_{lateral}$ は非常に大きい可能性がある \rightarrow LSDを記述するには軸対称2次元解析が不可欠ではないか?

 $\rho_1 u_1 = \rho_2 u_2$

 $\rho_1 u_1^2 + p_1 = \rho_2 u_2^2 + p_2$

 $\frac{1}{2}u_1^2 + h_1 + q = \frac{1}{2}u_2^2 + h_2$

Rayleigh

Hugoniot

結論

① 実験で観測されるLSD波に関して<mark>爆風波変換効率η_{trans}を計測し以</mark>下の結果を得た

雰囲気ガス条件	爆風波変換効率η _{trans}
Air 1.0 atm	0.45
Ar 1.0 atm	0.48
He 1.0 atm	0.54

- ② 吸収エネルギーの約8割が横方向へ流出(h_{lateral})していると仮定するとユゴニオ解析で解が存在する
- → 実験条件の再現には2次元軸対称のCFDが必要なことを示唆

ご清聴ありがとうございました

The University of Tokyo Keisuke Kanda k-kanda@g.ecc.u-tokyo.ac.jp

Appendix

レーザー強度の時間変化

レーザーパワーは時間変化する

→ レーザー強度(レザーパワー/断面積)も同様に変化する

20/03/25 「高エネルギー電磁ビームに誘起される放電とその工学的応用」ワークショップ

ユゴニオ解析のLSDへの適用(CJ)

Ar 1.0 atm, S=25 GW/m²のLSD でのユゴニオ解析によるp-v線図

LSD波面の進展速度 U_s が CJ速度なら U_s $\propto S^{1/3}$

$$U_s = \sqrt[3]{2(\gamma^2 - 1)\frac{S}{\rho_1}}$$

[1] Y. P. Raizer, "Heating of Gas by a Powerful Light Pulse", Sov. Phys. JETP, 21, 5, pp.1009-1017 (1965).

ユゴニオ解析のLSDへの適用(overdriven)

Ar 1.0 atm, S=25 GW/m²のLSD でのユゴニオ解析によるp-v線図

LSD波面のCJ速度は $U_s \propto S^{1/3}$ だが Overdrivenなデトネーションの 可能性ある (その時 p_2 は速度に依存)

LSDの進展速度はCJ速度に従わない

 U_s がCJ条件で決まるなら

$$U_s = \sqrt[3]{2(\gamma^2 - 1)\frac{S}{\rho_1}}$$
 レーザー強度 $S[W/m^2]$ $U_s(S) \propto S^{1/3}$

実験による進展速度は Ar,He,Airのいずれも 1/3乗則に従わない^{[1][2]}

進展速度*U*_sはCJに従っておらず Overdrivenなデトネーションの 可能性がある

様々なガス種におけるLSD進展速度のレーザー強度依存性

[1] K. Matsui, T. Shimano, J. A. Ofosu, K. Komurasaki, T. Schoenherr, and H. Koizumi, "Accurate propagation velocity measurement of laser supported detonation waves," *Vacuum*, **136**, 171 (2016).

[2] T. Shimano, J. A. Ofosu, K. Matsui, K. Komurasaki, and K. Koizumi, "Laser-Induced Discharge Propagation Velocity in Helium and Argon Gases," *Trans. JSASS*, **60**, 6 (2017), pp. 378-381.

LSD波面でほぼレーザーは完全吸収されている

①レーザー吸収長 k_{IB} \sim 0.2 mm < プラズマのスケール \sim 4 mm \rightarrow 透過少ない

②n_e (~2.6x10²⁴ m⁻³) < カットオフ密度 (~0.99 x 10²⁵ m⁻³) → 反射は少ない

チューブによるLSC遷移の変化

He 1.0 atm でのシュリーレン写真 t= 3.3 us w/o tube

- ・LSDからLSCへの遷移は チューブ内では遅い
- チューブのLSD領域では速度上昇

He 1.0 atm でのシュリーレン写真 t = 3.3 us (w tube)

チューブなしでは横方向への エンタルピー流失を示唆

ーザー吸収長さ

レーザー吸収長

$$k_{IB} = \sigma_{ei} n_e n_i (\exp(hpc / \lambda kT) - 1)$$
 $n_e = n_i = 4.05*10^{24} \text{ m}^{-3}$
 $T_e = 2.1 \text{ eV (from Saha)}$
 $\sigma_{ei} = 1.37 \times 10^{-27} \lambda^3 / T^{1/2}$

レーザー吸収長は プラズマよりも小さい

エネルギー吸収が十分は 行われている

 $k_{\rm IB} = 1.15 \times 10^4 \, \rm m^{-1}$ $L = 1/k_{IB} = 0.09 \text{ mm}$