マイクロ波ロケット打上げ用RF源のパ ワーマトリックスの検討

ー リング共振器式マルチプレクサーの 特性検討 ー

摂南大学 理工学部 機械工学科 小田 靖久

発表内容

リング共振器式マルチプレクサーの検討
 –ビーム源システムの出力制御技術

- ビーム源システム要素機器の情報
 ジャイロトロン用マグネットのコスト要素
 伝送系の性能
 電源システム
 - -システム全体の効率(ウォールプラグ効率)

ビーム源の全体構成

- ギガワット級発振源の構成
 アンテナシステム
 - 出力制御
 - 伝送系
 - 発振源(ジャイロトロン)

- 電源•補器類

アンテナ

出力制御技術

- 共振リング型ダイプレクサー(マルチプレクサー)
- 大電力に適用可能な出力制御技術
- ・パワー切替/パワー合成/パワー分配

リング共振器の動作原理と特性

リング共振器の動作原理と特性

リング共振器の動作原理と特性

複数リング共振器によるマルチプレクサ-

マルチプレクサーの周波数変更による動作特性

ハーフミラー反射率 a=0.7 1st stageの共振長 L=650 mm ステージ間の共振長のずれ δL = 0.35 mm

各ステージの動作特性

ハーフミラー反射率とマルチプレクサーの動作特性

1st stageの共振長 L=650 mm ステージ間の 共振長のずれ δL = 0.35 mm

マルチプレクサーのさらなる多段化の可能性

$\delta L = 0.35 \text{ mm}$

δL = 0.15 mm

$\delta L = 0.25 \text{ mm}$

ハーフミラー反射率 a=0.8 1st stageの共振長 L=650 mm

各ステージの共振長の調整により、 切り替え周波数の差は変更可能 さらなる多段化は十分に可能

ハーフミラー反射率をあげると 共振回路のQ値が高くなり、 全反射ミラーや経路損失が 増大すると予想される

ハーフミラー反射率 a=0.5

ハーフミラー反射率 a=0.8

周波数 170 GHz

周波数 170 GHz

共振長制御による6ポートマルチプレクサー動作

ハーフミラー反射率 a=0.8

Case 1 (1st stage P4 select)

	L [mm]	P4/P _{total}	P2/P _{total}
1st stage	651.18	0.997	0.003
2nd stage	650.35	0.012	0.988
3rd stage	650.35	0.012	0.988
4th stage	650.35	0.012	0.988
5th stage	650.35	0.012	0.988

Case 3 (3rd stage P4 select)

	L [mm]	P4/P _{total}	P2/P _{total}
1st stage	650.35	0.012	0.988
2nd stage	650.35	0.012	0.988
3rd stage	651.18	0.997	0.003
4th stage	650.35	0.012	0.988
5th stage	650.35	0.012	0.988

Case 2 (2nd stage P4 select) 0.6

周波数 170 GHz

L [mm]	P4/P _{total}	P2/P _{total}
650.35	0.012	0.988
651.18	0.997	0.003
650.35	0.012	0.988
650.35	0.012	0.988
650.35	0.012	0.988

Case 4 (4th stage P4 select $\hat{E}_{0.6}^{0.8}$

L [mm]	P4/P _{total}	P2/P _{total}
650.35	0.012	0.988
650.35	0.012	0.988
650.35	0.012	0.988
651.18	0.997	0.003
650.35	0.012	0.988

Case 5 (5th stage P4 select)

	L [mm]	P4/P _{total}	P2/P _{total}
1st stage	650.35	0.012	0.988
2nd stage	650.35	0.012	0.988
3rd stage	650.35	0.012	0.988
4th stage	650.35	0.012	0.988
5th stage	651.18	0.997	0.003

Case 6 (5th stage P2 select)

L [mm]	P4/P _{total}	P2/P _{total}
650.35	0.012	0.988
650.35	0.012	0.988
650.35	0.012	0.988
650.35	0.012	0.988
650.35	0.012	0.988

共振長制御による6ポートマルチプレクサー動作

ハーフミラー反射率 a=0.5

Case 1 (1st stage P4 select)

	L [mm]	P4/P _{total}	P2/P _{total}
1st stage	651.19	0.995	0.005
2nd stage	650.35	0.112	0.888
3rd stage	650.35	0.112	0.888
4th stage	650.35	0.112	0.888
5th stage	650.35	0.112	0.888

Case 3 (3rd stage P4 select)

	L [mm]	P4/P _{total}	P2/P _{total}
1st stage	650.35	0.112	0.888
2nd stage	650.35	0.112	0.888
3rd stage	651.19	0.995	0.005
4th stage	650.35	0.112	0.888
5th stage	650.35	0.112	0.888

C D		-
Case 2	(2nd stage P4 select)	0

周波数 170 GHz

L [mm]	P4/P _{total}	P2/P _{total}
650.35	0.112	0.888
651.19	0.995	0.005
650.35	0.112	0.888
650.35	0.112	0.888
650.35	0.112	0.888

Case 4 (4th stage P4 select $\frac{2}{5}$ $\frac{0.8}{0.6}$

L [mm]	P4/P _{total}	P2/P _{total}
650.35	0.112	0.888
650.35	0.112	0.888
650.35	0.112	0.888
651.19	0.995	0.005
650.35	0.112	0.888

Case 5 (5th stage P4 select)

	L [mm]	P4/P _{total}	P2/P _{total}
1st stage	650.35	0.112	0.888
2nd stage	650.35	0.112	0.888
3rd stage	650.35	0.112	0.888
4th stage	650.35	0.112	0.888
5th stage	651.19	0.995	0.005

Case 6 (5th stage P2 select)

L [mm]	P4/P _{total}	P2/P _{total}
650.35	0.112	0.888
650.35	0.112	0.888
650.35	0.112	0.888
650.35	0.112	0.888
650.35	0.112	0.888

フェイズドアレイの各エレメントの電力と位相を制御する

マルチプレクサーによるガウス分布へのパワー分解

Case 1 ($w_0 \sim 0.5$)

	L [mm]	P4/P _{total}	P2/P _{total}	P4 out	P2 out
1st stage	651.19	0.995	0.005	0.995	-
2nd stage	650.35	0.112	0.888	<0.001	-
3rd stage	650.35	0.112	0.888	<0.001	-
4th stage	650.35	0.112	0.888	<0.001	-
5th stage	650.35	0.112	0.888	<0.001	<0.001

Case 2 ($w_0 \sim 1$)

	-				
	L [mm]	P4/P _{total}	P2/P _{total}	P4 out	P2 out
1st stage	651.30	0.724	0.276	0.724	-
2nd stage	651.19	0.995	0.005	0.274	-
3rd stage	651.19	0.995	0.005	0.001	-
4th stage	651.19	0.995	0.005	<0.001	-
5th stage	651.19	0.995	0.005	<0.001	<0.001

ハーフミラー反射率 a=0.5 周波数 170 GHz

マルチプレクサーによるガウス分布へのパワー分解

Case 3 ($w_0 \sim 2.5$)

	L [mm]	P4/P _{total}	P2/P _{total}	1	P4 out	P2 out
1st stage	651.45	0.363	0.637	1	0.363	-
2nd stage	651.38	0.499	0.501	1	0.317	-
3rd stage	651.38	0.499	0.501	1	0.159	-
4th stage	651.38	0.499	0.501	1	0.080	-
5th stage	650.30	0.724	0.276		0.058	0.022

Case 4 ($w_0 \sim 4$)

-						
ſ		L [mm]	P4/P _{total}	P2/P _{total}	P4 out	P2 out
ſ	1st stage	651.53	0.265	0.735	0.265	-
Ī	2nd stage	651.47	0.334	0.666	0.246	-
ſ	3rd stage	651.42	0.415	0.585	0.203	-
Ī	4th stage	651.37	0.523	0.477	0.150	-
Ī	5th stage	651.35	0.575	0.425	0.079	0.058

ハーフミラー反射率 a=0.5 周波数 170 GHz

リング共振器によるパワー合成

マルチプレクサー検討のまとめ

- 5段リング共振器を使ったマルチプレクサー
 解析式による簡略評価
- 入力周波数変化を用いた動作評価
 6ポート出力切替え
 さらなる多ポート化の見通しも
- ・ 共振長変化を用いた動作評価
 - 6ポート出力切替え
 - パワーの配分動作によるガウス分布生成
 - 電力・位相制御型フェイズドアレイに利用可能
- 今後の展開(希望)
 - フェイズドアレイアンテナ計算と組み合わせる?
 低電力であれば、実験もできるか??

ジャイロトロン用マグネットのコスト要素

コイル内径	120 mm	240 mm		
コイル厚さ	26 mm	35 mm		
コイル長さ	250 mm	250 mm		
コイル電流	100 A	100 A		
A·T	1,160,000	1,560,000		
中心磁場	5.01 T	5.13 T		
線材質量	24.7 kg	62.7 kg		

線材(NbTi相当) ϕ0.75 mm / 8.3 g/cm³

マグネットのボア径が2倍となった場合 ・必要な超伝導線材が約2.5倍に増大 ・初期冷却&励磁に必要な冷却能力増大 →量産時の製造コストは少なくとも2倍以上 ボア径半分にて ジャイロトロン出力半分であれば、 全体コストを下げることにつながる(だろう) 漏れ磁場の影響低減によるサイト縮小も可能?