「先端宇宙推進工学」

4限 電気推進の原理と機構

1. 電気推進とは
2. 電気推進vs化学推進
3. プラズマ工学の基礎
4. 各種電気推進の開発競争

1. 電気推進とは?

"The acceleration of gases for propulsion by electrical heating and/or by electrical and magnetic body forces." (*Physics of Electric Propulsion*, Robert G. Jahn, 1968)

- 10,000 m/s以上の排気速度を得るには
 - 壁面から離れたガス加熱による10,000 K程度の超高温 維持
 - または
 - ローレンツカによる粒子直接加速
- ●高排気速度による<u>低燃費</u>を特徴とする。

電気の力を使って推進剤を加速

レジストジェット アークジェット (5-10 km/秒)

参考)液酸液水エンジン 4 km/秒

ホールスラスタ (15-25 km/秒) イオンエンジン (30-50 km/秒)

MPDスラスタ (50-100km/秒)

静電加速を利用したイオンエンジン

NASA NSTAR

静電加速を利用したホールスラスタ

東京大学ホールスラスタ

電気推進の特徴

- 排気速度が10倍高い、燃費が1/10
- 静止衛星の軌道移行には10~100 kWの電力が必要
- 推進機価格は衛星本体価格の約10%と高価

ホールスラスタ (15~25 km/s)

イオンスラスタ (30~50 km/s)

人工衛星側が負担するアポジ・キック

 $\Delta V_{a} = 1831 [m/s]$

人工衛星で推進剤が占める割合はどのくらい?

気象衛星ひまわり5号 ©JAXA 1995年3月 ひまわり5号打ち上げ 2000年3月 寿命(5年)を迎える 2003年5月 観測を米国ゴーズ9号にバトンタッチ 2005年,2006年 ひまわり6,7号打ち上げ 2014年,2016年 ひまわり8,9号打ち上げ(寿命15年)

位置制御用ヒドラジン1液式ロケットモーター

ひまわり9号(3.5 ton) に電気推進を用いると 軌道投入推進剤質量 1342 kg→255 kg 位置制御推進剤質量 858 kg→90 kg 機器質量 1300 kg (37%)→80%

2. 電気推進 vs 化学推進

ΔV (km/s)

電源重量-The higher the V_e is, The Better?

- EP thrusters must have electric power supply onboard the spacecraft.
- The weight of power supply scales monotonically with the power level, which is directly related to V_e.
- There exists an optimal $V_{\rm e}$ for a given ΔV and thrust level.

軌道投入に最適な排気速度(1)

太陽電池パドル質量 m_{panel}

$$m_{\rm panel} = \beta P_{\rm s}$$

Typical β =0.05 kg/W

$$P_{\rm s} = \frac{\dot{m}_{\rm prop} V_{\rm e}^2}{2\eta_{\rm th}}$$

噴射時間(~軌道移行時間)τ

$$au = m_{\rm prop} / \dot{m}_{\rm prop}$$

軌道投入に最適な排気速度(2)

ペイロード比(ロケット方程式)

$$\frac{m_{\text{pay}}}{m_{\text{i}}} = 1 - \frac{m_{\text{prop}}}{m_{\text{i}}} - \frac{\beta P_{\text{s}}}{m_{\text{i}}}$$
$$= \exp\left(\frac{-\Delta V}{V_{\text{e}}}\right) - \frac{V_{\text{e}}^2}{2V_0^2} \left\{1 - \exp\left(\frac{-\Delta V}{V_{\text{e}}}\right)\right\}$$

最適排気速度

$$V_0 = \sqrt{\eta_{\rm th} \tau / \beta}$$

遷移日数_てに上限を設けると 遷移日数 最適排気速度V

遷移日致	最適排気速度V ₀
1ヶ月	10 km/s
3ヶ月	17 km/s(ホール)
6ヶ月	24 km/s
1年	35 km/s(イオン)

速度増分が大きなミッションへの適用に有利

長距離ミッション (interplanetary flights) 長期間ミッション (station keeping)

Ex. Orbit to Mars $\Delta V = 14$ km/s

Typical ion thruster $V_{\rm e}$ = 30 km/s \Rightarrow

$$m_{\rm i}/m_{\rm f} = \exp(\Delta V/V_{\rm e}) \approx 1.6$$

Cf. Typical chemical $V_{\rm e}$ = 3 km/s \Rightarrow

$$m_{\rm i}/m_{\rm f} = \exp(\Delta V/V_{\rm e}) \approx 106$$

衛星オペレーターは電気推進と 化学推進のどちらを選ぶ?

静止衛星の運用例(1)

MBSAT: DBS communications satellite for Japan and Korea built by SS/L, 2004. The first US-built satellite with SPT-100.

Orbit Control Maneuvering of chemical and Hybrid GEO satellites

Propulsion	南北制御	南北制御	東西制御	東西制御
System	time/firing	Cycle	time/firing	
20-N Bi-prop (x 2 units)	A few minutes	1 per two weeks	A few seconds	2 per two weeks
SPT-100/Bi-	12 hrs.	2 per day	A few seconds	2 per day
prop	by SPT-100	by SPT-100	by a Bi-prop	by a Bi-prop

静止衛星の運用例 (2)

南北制御ΔV: 95%, 東西制御ΔV: 5%

【南北制御の噴射回数】

•2液式スラスターのみの場合, 2週間で3 maneuvers.

•2液式スラスターとEPのハイブリッドの場合,EPの推力が小さいため毎日噴射、2週間で56 maneuvers.

【南北制御の噴射時間】

•2液式スラスターの場合,数分の噴射

•ハイブリッドの場合、12時間の噴射 【その他】

・ハイブリッドの場合太陽電池とバッテリからの電力供給を受ける
⇒ 春と秋の 日食の際のバッテリ容量の管理が複雑

電気推進システム導入のコスト (1)

比較例:静止通信衛星の軌道移行回数はEPハイブリッドの場合、2液式スラスターのみの場合と比較して18倍に.

- An orbital maneuver is proceeded by a ranging, orbit determination, and control planning and followed by another ranging, orbit determination, and assessment.
- 人件費の負担増(with one operator + one orbital engineer) は15年で約8億円

電気推進システム導入のコスト(2)

- MBSAT carries the same number of bi-prop thrusters as the satellite that does not carry SPT-100s.
 - MBSAT: <u>12 bi-prop</u> thrusters + 4 SPT-100 thrusters
 - Chemical propulsion satellite: <u>12 bi-prop</u> thrusters
 - 20億円のコスト増 for 4 SPT-100、ジンバル、電源、ガス供給系
- Trade-off between the bi-propellant mass and the mass of SPTrelated hardware and xenon.
 - The decrease in launch cost is *minimal*.
- Having an EP system, with less propellant mass and longer mission lifetime, would NOT REALLY save the total cost when considering actual satellite procurement and operations!!

電気推進 vs 化学推進のまとめ

EP can appeal to missions of *extremely* high ΔV requirements.

- Interplanetary missions
- Deep-space probes
- EP can continue to evolve.
 - Automatic operation
 - Greater variety of the combinations of thrust, I_{sp}, and power levels to achieve optimum transfer

3. プラズマエ学の基礎

電気推進ロケット入門(東京大学出版会)挿絵

プラズマとは

物質の第4の状態 (固体、液体、気体、プラズマ)

身近なプラズマ

- ・ 蛍光灯: アルゴン+水銀のプラズマ
- ・電離層、オーロラ
- ・太陽、星間物質
- ・アーク溶接器
- ・プラズマディスプレイ (マイクロプラズマ)
- ・核融合プラズマ:水素プラズマ

電離気体

デバイ遮蔽とデバイ長

- プラズマ中に電荷や電位が与えられると、それによって周囲に生じる電界を遮蔽する性質がある。
- 温度T = 0であれば、電荷の雲によって完全に遮蔽され、電界は周辺に生じない。

⇒電荷の雲の層のことをシースと呼び、その端をシース端と呼ぶ。

T≠0であれば、いくらかの粒子は電荷の雲の端から飛び去ってしまう。
⇒ kT/eのオーダーの電位が周辺のプラズマ中に漏れる。それをプレシースと呼ぶ。

デバイ長:シースの厚さの目安

$$\lambda_D = 7430 \left(\frac{kT}{n}\right)^{1/2}$$

where *kT* in eV, n in per m³, and λ_{D} in m.

電離平衡 (局所熱平衡、輻射平衡、 ボルツマン分布)

局所熱平衡(Local Thermodynamic Equilibrium)にあるプラズマの電子励 起状態はボルツマン分布に従う。 すなわちエネルギーレベルE_iにある粒子の数の割合(存在確率)は、

$$\frac{n_j}{N} = g_j \exp\left(-\frac{E_i}{kT}\right)$$
 ボルツマン分布

 $k: ボルツマン定数 = R/N_A = 1.3806503 \times 10^{-23}$ [J/K]

光学的に厚いプラズマでは、輻射とその再吸収によって、電子励起状態(電子励起温度)が平衡に保たれる。重粒子の温度(モード)と平衡でなくてもよい。

(局所熱平衡、輻射平衡、ボルツマン分布)

・サハの平衡式

 $\frac{n_{+}n_{\rm e}}{n_{\rm n}} \approx 4.82 \times 10^{21} T^{3/2} \exp\left(-\frac{11600V_{\rm i}}{T}\right)$

 $A \Leftrightarrow A^+ + e$

電離平衡

アルゴン電離度の温度、圧力依存性

詳しくは電気推進ロケット入門(東京大学 出版会)を見てください。

4. 各種電気推進の開発競争

4.1 電気推進研究の黎明期

- In 1906, R. H. Goddard expressed informally many of the key physical concepts of EP.
- In 1911, Konstantin Tsiolkovskiy proposed similar concepts as Goddard.
- In 1929, Herman Oberth included a chapter on EP in his classic book "Man into Space."
- In 1950s, Ernst Stuhlinger summarized his studies in his book "Ion Propulsion for Space Flight."
- In 1960s, EP became a major component of space propulsion development.
 - 米国ではイオンスラスタ
 - ソ連ではホールスラスタ

Telstar ('93-'95) 24 Arcjets (GE Aerospace-Lockeed Martin)

PanAmSat ('90-'00) 60 Ion thrusters (Hughes-Boeing)

ロシアおよびヨーロッパ

Russia

More than 100 Hall thrusters on Cosmos & Meteor series from '70s.

Europe

<u>РР\$1350</u>

D-55

Astrium and Alcatel are competing and cooperating for Hall thrusters in 2000s.

日本	
<image/> <text></text>	Image: Additional and the second s

Ion thrusters		Туре	No.	Operation	Satellite
NASA	NSTAR	Ring Cusp	1	16kh	DS1
Design	XIPS13	Ding Cuan	52	55kh	BS601HP
Boeing	XIPS25	King Cusp	24	14kh	BS702
A	UK10	Kaufman	2	0.7kh	Artemis
Astrium	RIT10	RF	3	7.7kh	Artemis, EURECA
MELCO	IES	Kaufman	8	0.2kh	ETS6, COMETS
ISAS/NEC	μ10	Microwave	4	40 kh	HAYABUSA

NSTAR 直流放電式

(NASA Solar electric propulsion Technology Application Readiness)

- Beam diameter: 40 cm
- Power : 2.3 kW
- V_e : 31 km/s
- Thrust : 92 mN
- Efficiency : 60 %
- Propellant : Xe

RIT-10(高周波放電式) and UK-10(直流放電式)

RIT-10 (Germany) and UK-10 (UK) on the Artemis satellite, \sim 500 W, \sim 20 mN, \sim 30 km/s

はやぶさμ10 マイクロ波放電式

はやぶさ小惑星探査機 総重量約500kg 2003年5月打ち上げ 2010年6月地球帰還 イオンエンジン(µ10) ビーム直径 10 cm 定格推力 8 mN 消費電力 350 W 搭載大数 4台(最大3台同時運転) 搭載推進剤質量 66 kg 積算運転時間 4万時間・台

Overview of Electric Propulsion Activities in Japan, komurasaki *et al*. Joint Propulsion Conference, 2007, 他

4.3 ホールスラスタ開発

NASA ホールスラスタ

photograph

NASA-457M Hall thruster

UM-NASA 173M Hall Thruster

世界最大 NASA-X3 Hall thruster

Busek (米国) クラスター

BHT-350 ホールスラスタ

For each thruster; Power : 150 W (200 V/0.75 A) Thrust : 12 mN Isp : 1300 sec Eff.: 42 %

欧州 ホールスラスタ

SMART-1 ホールスラスタ

<image>

Safran社製で2021年に完成. Power:5 kW, Thrust:300 mN, I_{sp}:2000 s , Eff:50% 全電化衛星用に開発

PPS-5000 ホールスラスタ

2006年の11月15日に月の周回軌 道に到着.その後二年間ほど月の 観察をした後に月に衝突.

• IHI/JAXA スラスター

parameter	value
Power	6 kW
Propellant	Xe, 20 mg/s
Efficiency	60%
Exhaust velocity	19 km/s
Thrust	390 mN

• 韓国スラスター for STSAT-3 by KAIST/SaTReC

parameter	value
Power	300 W
Propellant	Xe, 1mg/s
Anode efficiency	37%
Exhaust velocity	13 km/s
Thrust	>10 mN

東大ホールスラスタ(1)

1987年

1990年

2001年

2003年

2000年

2003年 金属チャンネル系

セラミックチャンネル系

2006年

2009年

東大ホールスラスタ(2)

2013年 UT-58

2014年RAIJIN 94 共同開発 5 kW級 2019年RAIJIN 66

ETS-6搭載予定の日本製ホールスラスタ

ホールスラスタが切り拓く宇宙探査の新時代 (JAXA)

技術試験衛星9号機(三菱電機)

「電気推進の原理と機構」まとめ

1. プラズマ(電離気体)を一粒子ずつ静電気力で加速することに よって、高排気速度・低燃費のエンジン(電気推進ロケット)を実 現することができる。

2. イオンエンジンは、その高排気速度の特徴を生かして、宇宙探 査ミッションに利用されるようになってきている。(はやぶさイオ ンエンジンなど)

3. ホールスラスタは、そのイオンエンジンよりも高い推力密度を 生かして、地球周回・静止軌道の大型人工衛星への搭載が進んでい る。