
AIAA 2004-1262
Application of Object-Oriented Design Patterns
to a CFD code with an Adaptive Mesh Refinement

For permission to copy or to republish, contact the copyright owner named on the first page.
For AIAA-held copyright, write to AIAA Permissions Department,

1801 Alexander Bell Drive, Suite 500, Reston, VA, 20191-4344.

42nd Aerospace Sciences Meeting & Exhibit
5–8 January 2004

Reno, Nevada

The University of Tokyo
Tokyo, Japan

Technique

H. Katsurayama, K. Komurasaki, and Y. Arakawa

42nd AIAA Aerospace Sciences Meeting and Exhibit
5-8 January 2004, Reno, Nevada

AIAA 2004-1262

Copyright © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

AIAA 04-1262

Application of Object-Oriented Design Patterns to a CFD Code
with an Adaptive Mesh Refinement Technique

Hiroshi KATSURAYAMA∗, Kimiya KOMURASAKI†, and Yoshihiro ARAKAWA‡,

The University of Tokyo, Hongo 7-3-1, Bunokyo, Tokyo, 113-8656, Japan

ABSTRACT

Object-Oriented design patterns for a general CFD code were suggested, and were also applied
to an Adaptive Mesh Refinement(AMR) using unstructured mesh. For a test computation,
the shock tuble problem is solved. In addtion, a run-time speed between a procedural and
OOP code is compared. The run-time speed of the C++ code is about 7 times as slow as the
Fortran code. However, the flexibilty and reusability of the code are dramatically enhanced
by OOP.

INTRODUCTION

Until now, most of CFD applications had been
coded by FORTRAN language. Although FOR-
TRAN CFD codes are efficient, the codes tend
to lose reusability, flexibility and extensibility for
solving complex problems, for example, an Adap-
tive Mesh Refinement (AMR).

Recently, several researchers suggest the appli-
cations of Object-Oriented Programming (OOP)
to CFD.1,2 The OOP overcomes the draw-
backs of traditional programming fashion by class
encapsulation, polymorphism and class inheri-
tance.3 In OOP, calculations proceed by object-
communications. For example, in C++ language,
a class produces objects, and they communitcates
each other through their operations. Thereby, it is
important what classes should be extracted from
CFD problems. If the class extractions are poor,
the code may be more complex than the procedu-
ral programming. Gamma et al.’s “Design pat-
terns”4 propose the solutions for this problem.
Their general design pattern identifies the partic-
ipating classes and objects, their roles and collab-
orations, and the distribution of responsibilities.

There are several commercial CFD softwares,
they may be coded by OOP fashion. However,
most of CFD codes in laboratory level would be
coded by traditional fashion, and their mentaince
would be quite troublesome. In this paper, OOP
design patterns for a general CFD code are sug-
gested, and are also applied to an Adaptive Mesh
Refinement(AMR) using unstructured mesh. In
∗Graduate student, Department of Aeronautics and Astro-
nautics, Student Member AIAA
‡Associate Professor, Department of Advanced Energy,
Member AIAA
§Professor, Department of Aeronautics and Astronautics,
Member AIAA
Copyright c©2004 by the American Institute of Aeronautics
and Astronautics, Inc. All rights reserved.

addition, a shock tube problem is solved for a test
computation.

Finally, run-time speeds of Fortan and C++
code are compared.

NUMERICAL SCHEME

The 2-D compressible Euler equation is solved us-
ing unstructured cell-centered mesh. Inviscid flux
is calculated by AUSM-DV6 scheme which is ex-
tended to 2nd order spatial accuracy by MUSCL
approach with Venkatakrishnan’s limiter.7 For
AMR, Rivira’s bisection algoritm8,9 is used.

OBJECT-ORIENTED PROGRAMMING

In order to code by objecct-oriented fashion, three
mechanisms of class encapsulation, polymorphism
and class inheritance are indispensible. C++ and
Java language has the mechanisms, and are famous
for the representative OOP language. Though
Java recently becomes very popular in a general
software development, the run-time is still slow
for scientific calculations. The run-time of C++ is
not too slow, and it has many useful libraries.10–13

Thereby, we choose C++ to code a CFD program
by OOP.

Class Encapsulation

Figure 1 shows a simplified class diagram of a Cell
class, using UML(Unified Modeling Language).5

A box expresses a class. The rows in the box des-
ignate the name, data member, and member oper-
ations. A minus sign expresses a private member,
and a plus sign expresses a public member. The
private members are not directly operated from
other objects but only by public member opera-
tions.

1
American Institiute of Aeronautics and Astronautics

Cell

−No:
−gas:
−nodes :
−edges :
−cells :

+ setNode ():
+ setEdge():
+ setCell ():
+ getVolume ():

Gas
Class_1

Class name

Data member

Operation

Figure 1: Class Encapsulation.

Since the data related to an object can be bun-
deld to one place and be operated by own pub-
lic operations, the code becomes easy to read and
mistakes in coding decrease.

Class Inheritance and Polymorphism

Figure 2 shows an example of class inheritance of
the Cell class. A closed arrow shows a class in-
heritance, herein, a subclass points its superclass.
An italic class name means an abstract class. It
defines the common operations of subclasses, and
the outlines of diffrent operations between sub-
classes. Diffrent operations are specilized in each
subclass(concrete class).

By the class inheritance, the mechanism of poly-
morphism can be utilized. If the following loop
conducts for the data set of pointer of Edge as
shown in Fig.3,
for (data set of pointer of Edge)
data->operation();

the specilaized operations for each concrete class
is called. By this mechanism, a client calss does
not has to know the true type. As the result,
the concrete class is encapsulated from its client
class. In addition, when the client needs other
concrete class, the new concrete classes are only
added. Its modification never spread over all the
code. This promotes the reusability and extensi-
bility of a code.

APPLICATION OF DESIGN PATTERNS
TO A CFD CODE

Data Structure

Figure 4 shows the class hierarchy of mesh compo-
nents. An abstract Cell class are desined to have
the concrete classes, TriangleCell, SquareCell
and GhostCell<int>. All interior cell objects are
created from the TriangleCell or SquareCell.
The GhostCell<int> class is defined as a tem-
plate class. For example, A GhostCell<0> object
is a ghost cell outside of a wall. Only one object
is created from each ghost object and shared by
interior cells or boundary edges as shown in Fig.5.

Cell

−number :

+ getNumber ():
+ getVolume ():

SquareCell

−data :

+ getVolume ():

Abstract
Class

Concrete
Classes

TriangleCell

−data :

+ getVolume ():

Outline
operation

Specialized
Operation

Specialized
Operation

Common
opertion

Figure 2: Class Inheritance.

Data set of pointer of Edge

edge

 wallEdge

interiorEdge

edge

edge

edge

edge

interiorEdge

interiorEdge

inflowEdge

Figure 3: Polymorphism.

An abstract Edge class is also designed to have
a InteriorEdge and BoundaryEdge<int> con-
crete class. Unlike the GhostCell<int> class, All
edge objects on boundaries are created from the
BoundaryEdge<int> class.

A Node class is designed as a single concrete
class. Whether a Node object is located on bound-
aries or not can be judged by refering the Edge
type belonging to itself.

Relations between mesh components are also
shown in Fig.4. A normal line indicates the re-
lations between classes. To create the mesh or to
proceed the CFD calculations in the unstructured
scheme, a mesh componet has to know other com-
ponents which construct or surround itself. The
Cell object has the vector containers of point-
ers of its adjacent cells, consitutive nodes and
edges. The Edge object has the vector containers
of pointers of its consitutive nodes and two adja-
cent cells. The Node object has the hash set con-
tainers of its adjacent cells, nodes and edges. The
C++ Standard Template Library(STL) is used for
the vector and hash set containers.

In the present code, all pointers are imple-
mented using the Boost shared pointer.11 Since
the shared pointer is automatically deleted if it

2
American Institiute of Aeronautics and Astronautics

Cell

−cells :
−edges :
−nodes :

TriangleCell

SquareCell GhostCell<int> BoundaryEdge<int>InteriorEdge

Edge

−cells :
−nodes :

Node

−cells :
−edges :
−nodes :

Cell

Node

Edge

Figure 4: Class hierarchy and relations of mesh
components.

is not refered from anywhere, the code is free
from managing memory leak. Since the nubmer
of compnents dynamically changes in AMR, the
code becomes simple by the shared pointer. (No-
tice: since the mesh component circularly refers
each other, the component must clear the relations
at the coarsening process in AMR.)

Strategy Pattern4

Figure 6 shows the data structure of physical val-
ues. Primitive values such as density, pressure,
velocity and etc. are handled through an abstract
Gas class. Concrete classes such as an IdealGas
class, Air class and etc. are derived from the Gas
class. Each concrete class has its primitive values
as data members. Operations particular to each
gas species, for example, the calculation of speed
of sound, are sepcilaized in each concrete class.

Since the present code is the cell-centered
scheme, the Cell class has the shared pointer of
the Gas class , gas, which indicates a concrete gas
object. When a client class requests an operation
about primitive values to the Cell class, the Cell
class delegates the request to the concrete gas ob-
ject through the gas pointer.

Since a client class need not know what class the
gas points, the exchange of gas spcecies becomes
very easy.

Application to a Mesh construction

Builder Pattern4

Mesh is constructed by the Builder Pattern. Fig-
ure 7 shows its class relations. The Builder Pattern
is useful to create the object which is composed of
different objects. Here, it is explained how to con-
struct the mesh from an initial mesh data.

TriangleCell

TriangleCell

Wall

GhostCell<0>

BoundaryEdge<0> BoundaryEdge<0>

InteriorEdge

TriangleCell
TriangleCell

Figure 5: GhostCell.

Cell

−gas:

+ getPrimitive ():
+ getConservative ():
+ getSound ():

IdealGas

−primitiveValues :

+ getPrimitive ():
+ getConservative ():
+ getSound ():

Air

−primitiveValue :

+ getPrimitive ():
+ getConservative ():
+ getSound ():

Gas

+ getPrimitive ():
+ getConsrvative ():
+ getSound ():

<< realize >>

Figure 6: Gas class (Strategy Pattern).

In an initial mesh construction, a
meshConstruct operation of a MeshDirector
class is called. In the operation, a data file is
set to an abstract MeshBuilder class, and then
operations of the MeshBuilder class are called to
construct mesh.

For example, a buildCell operation of an
InitMeshBuilder makes new mesh components
reading the mesh data file, and adds them to a
cells data structure of a Mesh object.

By this pattern, the details of mesh con-
struction are hidden in the concrete classes
of the MeshBuilder. For example, when the
method of mesh construction in a restart
computation is different in an initial com-
putation, the MeshDirector need only use
the RestartMeshBuilder instead of the
InitMeshBuilder class.

Factory Method Pattern4

In the build operation of the concrete classes of
MeshBuilder, the Factory Method Patter is used
to create a new object of the mesh component.
Figure 8 shows its class relations.

For example, in the Edge creation, Concrete cre-
ator classes corresponding to concrete Edge classes
are derived from a EdgeCreator class. Each
create operation of the creator class returns a new
correspondig Edge object. Each creator classes
are registered to the data member, creators, of

3
American Institiute of Aeronautics and Astronautics

Mesh

−cells :
−edges :
−nodes :

+ addCell ():
+ addEdge ():
+ addNode ():
+ eraseCell ():
+ eraseEdge():
+ eraseNode ():

Prorduct

buildCell {
 for reading mesh data file
 mesh−>addCell(new Cell);
 }

meshConstruct {
 meshBuilder−>setDatafFile()
 meshBuilder−>buildCell();
 meshBuilder−>buildEdge();
}

MeshDirector

+ meshConstruct ():

MeshBuilder

−dataFile :

+ setDataFile ():
+ buildCell ():
+ buildEdge ():
+ buildNode ():
+ setNodeToCell ():
+ setEdgeToCell ():

InitMeshBuilder

+ buildCell ():

RestartMeshBuilder

create

Figure 7: Mesh construction (Builder Pattern).

Edge

InteriorEdge BoundaryEdge<int>BoundaryEdgeCreator<int>

+ create ():WallEdge

EdgeCreator

−creators :

+ create (key:):

InteriorEdgeCreator

+ create ():InteriorEdge

creators[0] = InteriorEdgeCreator;
creators[1] = BoundaryEdgeCreator<0>;

create(key) {
 return (creators[key]−>create());
}

create() {
 return new InteriorEdge;
}

MeshBuilder

+ buildeEdge ():

registered to map

use

create

create

Figure 8: Factory Method Pattern.

a EdgeCreator class with its corresponding key.
Then, a create operation of the EdgeCreator be-
comes to return the new object corresponding a
key.

The buildEdge operation creates a new Edge
object using the EdgeCreator by reading keys
from a mesh data file. Since the new operations
of C++ and if-else statements can be excluded
from the code of the buildEdge operation, the
code becomes simple and flexible.

The Factory Method Pattern can be easily im-
plemented by Loki template library.12

Hash set data structure

The insertion and deletion of mesh components
frequently occur in the AMR. Then, a hash set
data structure is used for the cells, edges and
nodes data member of the Mesh class. The shared

pointers of mesh components are registered to
these hash sets by the add operations of the Mesh
class. The hash set data structure can be easily
used by STLport library.10

Singleton Pattern4

The CFD code must have only a Mesh object. In
addition, the shared pointers of mesh components
are refered from many objects through the get op-
erations of the Mesh class. Hence, the Mesh object
must be single and be globaly accessible.

A singlton Mesh class is shown in Fig.9. In the
singlton class, its constructor is defined as a pri-
vate member, and it has itself, mesh, as a static
data member. Then, a exterior object can not
create a Mesh object. When a static Instance op-
eration is first called, a Mesh object is created. Af-
ter second call, its operation returns the reference

4
American Institiute of Aeronautics and Astronautics

Mesh

−mesh :
−cells :
−edges :
−nodes :

+ Instance ():Mesh
−Mesh():
+ getCells ():
+ getEdges ():
+ getNodes ():

Instance() {
 if (mesh != null) {
 mesh = new Mesh:
 }
 return &mesh;
}

For example...

int main() {
// O.K.
 mesh1_ = Mesh::Instance();

// mesh1_ = mesh2_
 mesh2_ = Mesh::Instance();

// prohibited operation
 mesh_ = new Mesh;

}

Figure 9: Singleton Pattern.

of the mesh. By this mechanism, the singularity
is ensured, and the mesh becomes globaly acces-
sible by Mesh::Instance() because it is a static
operation.

The Singleton pattern is used to design most
classes except for mesh components, for example,
classes about mesh construction, flux calculations,
AMR and so on.

The Singleton pattern can be easily imple-
mented by Loki template library.12

Application to an Inviscid Flux Calculation

Figure 10 shows the class hierarchy and relations
of an inviscid flux calculation. A visit opera-
tion of a FluxCalculator calculates the flux on
each edge, and adds it to the adjacent cells of the
edge. In the vist operation, the inviscid flux is
calculated using a getPrimitive operation of an
abstract Interpolation and a getFlux opeartion
of an abstract FluxScheme, as following,

visit(edge) {
left=interpolation->getPrimitive(edge,0);

right=interpolation->getPrimitive(edge,1);

flux = flusScheme->getFlux(left,right)

cells = edge->getCells();

cells[0]->renewRHS(flux, 0)

cells[1]->renewRHS(flux, 1)

}

The concrete classes of the Interpolation class
calculate the left(0) and right(1) primitive value
on the edge. The concrete classes of FluxScheme
calculates the inviscid flux using these primitive
value. Then, the flux is added(0) to or sub-
stracted(1) from the RHS member data of Cell
objects by the renewRHS operation of the Cell
class.

Since both Interpolation and FluxScheme
class are designed as the Strategy pattern, the

shcemes are easily exchangable.
In a concrete MUSCL class, a getPrimitive

operation is implemented by the getGradient
operation of a GradientCalcualtor and the
getLimiter operation of a LimiterCalculatior
class.

Besides, the Vector container of TVMET13 li-
brary is used for the flux, primitive value and so
on. The Vector container has the operations of
vector-vector addition, matrix-vector product and
etc., and its run-time is quitely fast for the tiny
vector whose elements is almost less than 20.

Visitor Pattern4

Figure 11 shows the class relations of the Visi-
tor Pattern for the flux calculation. The flux cal-
culation is invoked of the fluxCalculate opera-
tion of a CFD class, which becomes a core class in
the CFD code. A loop is conducted for the con-
tainer which consists of several concrete Edge ob-
jects. However, the flux on boundary edges must
be calculated by different methods. Then, the
fluxCalculate operation may be designed to call
the visit operation corresponding to a pointed
concrete Edge object in a if-else statement with
type checking. This loses the flexbility and read-
ablity of the code.

The Visitor pattern is used to avoid this. The
concrete Edge classes are designed to have accept
operations which transfers itself to the correspond-
ing visit operations of FluxCalculator class.

Figure 12 shows the sequence diagram of this
pattern.

1. The fluxCalculate operation is called and a
loop on the edges starts.

2. The accept operation is called for a shared
pointer of Edge, and the fluxCalculator ob-
ject is transfered to the concrete Edge object.

3. In accept operation, the concrete Edge object
calls its corresponding visit operation of the
FluxCalculator class.

4. The flux is calculated in the visit operation.

5. repeat 1 ∼ 4.

By this pattern, the code becomes simple though
its run-time may be slightly slow. This pattern can
be also implemented by Loki template library.12

Application to an AMR

In the present code, the Rivira’s bisection8,9 al-
gorithm is used for AMR. The Cell objects need
store its parent cell and son cell as shown in Fig.13.
In addition, the data for AMR level and etc. be-
comes necessary. These data is stored in the

5
American Institiute of Aeronautics and Astronautics

FluxCalculator

+ visit ():

FluxScheme

+ getFlux ():

FVS

+ getFlux ():

RoeFDS

+ getFlux ():

AUSMDV

+ getFlux ():

Interpolation

+ getPrimitive ():

MUSCL

+ getPrimitive ():

1stOrder

+ getPrimitive ():

GradientCalculator

+ getGradient ():

LimiterCalculator

+ getLimiter ():

StrategyStrategy

Interface_13

BoundaryScheme<int>

+ getFlux ():

use

use

use

Figure 10: Class hierarchy and relations of Inviscid Flux Calculation.

Edge

+ accept (visitor :):

InteriorEdge

+ accept ():void

BoundaryEdge<int>

+ accept (visitor :):

accept(visitor) {
 visitor_−>visit(*this);
}

visit(interiorEdge) {
 fvs−>calcFlux();
}

visit(boundaryEdge<0>) {
 boundaryScheme<0>−>calcFlux()
}

fluxCalculate {
 edgs = Mesh::Instance()−>getEdges();

 for all edges {
 edge−>accept(fluxCaluculator);
 }
}

CFD

+ fluxCalculate ():

FluxCalculator

+ visit (interiorEdge :):
+ visit (boundaryEdge<0> :):

Figure 11: Class relations of Visitor pattern.

AMRstate class, sperated from the Cell class, to
simplify the structure of the Cell class. Figure 14
shows the class relations of AMR. Classes conduct-
ing AMR refer and operate the AMRstate object
through the getAMRstate operation of the Cell
class. : The operation returns the shared pointer
of the AMRstate object.

The Builder pattern is basically used for
AMR. The AMR class directs the AMR through
Builder classes, an AMRMarker, a Refiner and a
Coarsener. The Builder classes renew the Mesh
object by refering and operating the AMRstate ob-
jects and the Mesh object.

The AMRMarker object calculates an error indi-
cator8 and add refine- or coarsen-marked cells to
the refineCells or coarsenCells of the AMR ob-
ject.

The Refiner and Coarsener object executes
the AMR and changes the AMRstate of each Cell

1

2

1

2

3

1

3

2

4

1

3

2

4

5

Figure 13: Bisection AMR.

by reading the refineCells and coarsenCells.

The complex operations of the AMR are en-
closed in each Builder class as its private opera-
tions which are used in each do operation.

6
American Institiute of Aeronautics and Astronautics

cfd edges interiorEdge fluxCalculatorBoundaryEdge<0>

fluxCalcualte :

repeat :

 :

 :

accept(fluxCalculator) :

visit(interiorEdge) :

accept(fluxCalculator) :

visit(boundaryEdge<0>) :

Figure 12: Sequence diagram of Visitor pattern.

AMR

−refineCells :
−coarsenCells :

+ doMark ():
+ doRefine ():
+ doCoarsen ():
+ addRefineCell ():
+ addCoarsenCell ():

Mesh

−cells :
−edges :
−nodes :

+ addOperations ():
+ eraseOperations ():

Cell

−AMRstate :

+ getAMRstate ():

AMRState

−sonCell :
−parentCell :

Director
Builders

AMRMarker

+ doMark ():

Refiner

+ doRefine ():

Coarsener

+ doCoarsen ():

Product

operate

use

Refer and operate AMRState

Figure 14: AMR class relations.

NUMERICAL RESULTS

Sod’s Shock Tuble Problem

The Sod’s shock tuble problem14 is solved by the
present AMR code. In this problem, trianglar cells
are used. Figure 15 shows the density contours
and mesh. The lines are exact solutions of the
shock tube problem, and the circls are calculated
densities. The calculated strength and speed of
shock wave agree with exact solutions.

Comparison of run-time speed between
Fortran and C++ code

To compare the run-time speeds of a Fortran and
an OOP (C++) code, the Sod’s shock tube prob-
lem is again solved using the square mesh (100×10

Table 1: Run-time speed of 1000 iterations
Fortran C++

sec 1.83 12.96

cells). In this computation, the AMR is not con-
ducted. Table 1 shows the run-time speed of 1000
iterations. The computation is run by the In-
tel Fortran or C++ compiler 7.1 on a Pentium4
2.26GHz mechine. The compiler options are -O3,
-tpp7 -xW.

The run-time speed of the C++ code is about
7 times as slow as the Fortran code. However,
the flexibilty and reusability of the code is dra-
matically enhanced. For example, in the present
test, the change of the code is only the exchange

7
American Institiute of Aeronautics and Astronautics

(a)
0 iteration.

(b)
500 iteration.

(c)
1000 iteration.

(d)
1500 iteration.

Figure 15: Adaptive mesh and denstiy contours in
the Sod’s shock tube problem.

of Cell type from the TrangularCell class to the
SquareCell class.

SUMMARY

Object-Oriented design patterns to a general CFD
code were suggested, and were also applied to an
Adaptive Mesh Refinement(AMR) using unstruc-
tured mesh. For a test problem, the shock tuble
problem is solved. In addtion, a run-time speeds
of a Fortran and C++ code are compared. The
run-time speed of the C++ code is about 7 times

as slow as the Fortran code. However, the flex-
ibilty and reusability of the code is dramatically
enhanced.

ACKNOWLEGEMENT

The calss figures in this paper were drawn by “Po-
seidon for UML Commuity Edition,” Gentleware
AG.15

REFERENCES

[1] Cambier, L. and Gazaix, M., “elsA: An Efficient
Object-Oriented Solution to CFD Complexity,”
AIAA Paper 2002-0108, 2002.

[2] Tchon, K-F., “Object-Oriented Programming
for a Temporal Adaptive Navier-Stokes Solver,”
AIAA Paper 95-0574, 1995.

[3] Stroustrup, B., “The C++ Programming Lan-
guage, 3rd ed.” Addison-Wesley, 1997.

[4] Gamma, E., Helm, R., Johnson, R., and
Vlissides, J. “Design Patterns: Elements of
Reusable Object-Oriented Software,” Addison-
Wesley, 1995.

[5] Unified Model LanguageTM,
“http://www.uml.org”

[6] Wada, Y. and Liou, M.S., “A Flux Splitting
Scheme with High-Resolution and Robustness for
Discontinuities,” NASA TM-106452, 1994.

[7] Venkatakrishnan, V., “On the Accuracy of Lim-
iters and Convergence to Steady State Solutions,”
AIAA Paper 93-0880, 1993.

[8] Sharov, D. and Fujii, K., “Three-Dimensional
Adaptive Bisection of Unstructured Grids for
Transient Compressible Flow Computations,”
AIAA Paper 95-1708-CP, 1995.

[9] Miyaji, L. and Fujii, K., “Simulation of unsteady
shock wave reflections using adaptive unstruc-
tured grids,” Proceedings of 15th International
Conference on Numerical Methods in Fluid Dy-
namics, pp.334-339, 1996.

[10] STLport web site, http://www.stlport.org
[11] Boost web site, http://www.boost.org
[12] Alexandrescu, A. “Mordern C++

Design,” Addison Wesly, 2001,
http://www.moderncppdesign.com

[13] Petzold, O. “Tiny Vector Matrix li-
brary using Expression Templates,”
http://tvmet.sourceforge.net

[14] Sod, G.A. “ A survey of several finite differ-
tization of parabolic differential equations in
one space variable, Journal of Computational
Physics, vol.43, pp.1-31, 1978.

[15] Gentleware AG, http://www.gentleware.com

8
American Institiute of Aeronautics and Astronautics

