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For enhancement of oxygen dissociation in constrictor type arc-heater plumes
cathode arc-heater was developed so as that oxygen passes through a high tem
cathode-jet region. Although the oxygen dissociation could be increased o
magnitude, operational time was limited in less than ten minutes and unstable 
caused significant cathode erosion. Then, instead of conventional thoriated-tungste
zirconium cathode with ceramic oxide layer was used. As a result, stable discharge
kept more than twenty minutes and the cathode erosion could be reduced even if ox
supplied at the upstream with argon. 

I. Introduction 
n developing Thermal Protection Systems for reentry vehicles, arc-heaters are often used 
conditions. Constrictor type arc-heaters 1-3 and segmented type arc-heaters 4, 5 are widely us

type has an advantage of high input power because it can sustain long arc discharge. However, it 
for maintenance after a few minutes operation. On the other hand, the constrictor type is simple a
long operational time and requires almost no maintenance after several-hour operation. Therefo
arc-heaters are convenient for basic TPS studies. 

I

However, their exact plume conditions are mostly unknown because they are usually in stron
non-equilibrium. Although non-intrusive spectroscopic methods such as emission spectroscopy 
Florescence have been actively applied to the characterization of such high enthalpy plumes, 
vibration, and rotational temperatures of atoms and molecules in the plumes are gradually cla
difficult to measure the chemical compositions by these spectroscopic methods. 

Recently, atomic oxygen in a high enthalpy flow is found to play important roles in TPS tests
front of TPS materials recombines with releasing exothermic heat because of its catalytic effects
flux enhancement up to twice as much as that in non-catalytic case. Another role of atomic oxyg
oxidation, which determines SiC erosion dramatically.10

Then, in our previous research11, number density distributions of meta-stable atomic ox
constrictor type arc-heater plumes developed at the University of Tokyo were measured b
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spectroscopy along with CFD analysis. 11-14 As a result, the measured peak of the distribution was located off axis at 
the -exit of the nozzle, and then the peak approaches to the axis in the downstream of the plume with the increase in 
number density as shown in Fig.1. Number density distribution of meta-stable argon (4s2[1/2]) has a peak on the 
axis at the nozzle exit and then the number density decreases rapidly in the downstream of the plume as shown in 
Fig.2. The similar result was obtained in the CFD analysis as shown in Fig.3.  

Consequently, oxygen is localized off axis near the nozzle exit and diffuses to the axis in the downstream region 
while it is dissociating. On the other hand, the meta-stable argon number density has a peak on the axis at the nozzle 
exit and decreases rapidly due to quenching in the downstream region. Therefore, it is thought that oxygen is not 
enough mixed with argon and not dissociated in the constrictor region. Although the oxygen is mixing in the plume, 
the dissociation rate is quite small because of the decrease in temperature, resulting in the low number density of 
atomic oxygen.  The mixing process is schematically shown in Fig.4.  

This result is due to the specific gas injection system in the constrictor type arc-heaters. In the constrictor type, 
inert gas such as argon or nitrogen is supplied from the base of cathode rod. Oxygen is added at the constrictor part 
to prevent the cathode from oxidization. In this study, for the enhancement of the oxygen dissociation, the oxygen 
injection-port and cathode material was improved. 
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Figure 4. Mixing process. 

Figure 2. Number density distributions of ArI
(4s2[1/2]). 

Figure 1. Number density distributions of
OI (3s5S).  
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Figure 3. Computed contours of number density
of atomic oxygen.  

 
 

II. Arc-heater using Hollow Cathode 
As mentioned above, the experimental and numerical results show that in the constrictor type arc-heater plumes, 

oxygen is not enough mixed with argon and not dissociated in the constrictor region resulting in the low number 
density of atomic oxygen. Therefore, instead of a conventional rod-cathode, a hollow cathode is used and oxygen is 
supplied through the cathode tip so as that oxygen passes through a high temperature cathode-jet region as shown in 
Fig.5.  

The experimental conditions were argon mass flow rate of 6 slm, input power of 1 kW (current of 50 A) and 
ambient pressure of 70Pa. The oxygen mass flow rate was 0.2 slm, which was one-fifth of that of the constrictor 
type arc-heater. At the more mass flow rate, the arc discharge couldn’t keep.  
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Number density distribution of meta-stable oxygen and 
translational temperature distribution at the nozzle exit along 
with those in the constrictor type arc-heater are shown in Figs.6, 
7. The number density distribution in the hollow cathode arc-
heater plume has a peak on the centerline. The maximum 
number density is four times as high as that in the constrictor 
type arc-heater plume, which corresponds to be one order 
higher considering the mass flow rate of oxygen. On the other 
hand, the translational temperature in the hollow cathode arc-
heater plumes is around 1100K, which is much lower than that 
in the constrictor one.  

This would be due to that the input enthalpy of the hollow 
cathode arc-heater is used for dissociation of oxygen much more
translational temperature also indicates the low electronic excitation te
the number density of the ground state oxygen in the hollow cathode
the constrictor one, though that of meta-stable in the hollow cathod
constrictor one. 

However, operation time is limited less than ten minutes beca
discharge and spark as shown in Fig.8. The erosion after one hour o
shown in Fig.9. This is because the melting point of the cathode go
(tungsten oxide) due to the oxidation. The severe erosion not only lim
contaminations. Then, the reduction of cathode erosion is required. 
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Figure 6. Number density distributions in
hollow and constrictor type arc-heater
plumes. 

Figure 8. Photo of unstable hollow
cathode arc-heater plume. 
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Figure 5. Hollow cathode arc-hater
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III. Arc-heater using Zirconium cathode 
To reduce the cathode erosion, zirconium was focused on instead of conventional tungsten. Although the melting 

point of zirconium (2100K) is lower than that of tungsten (3680K), it reacts with oxygen and forms oxide ceramic 
layer on the cathode surface. 15 This layer composed of zirconium dioxide called zirconia has high melting point 
(3000K) and low vapor pressure, resulting in much lower erosion rate than that of tungsten in the reactive gas flows. 
Then, in cutting, welding and spraying fields, zirconium cathodes are widely used for air plasma torches. 16-19 
However, there are few reports on details of zirconium cathodes and most of work has been done in Russia. In this 
study, zirconium cathode was applied and operational behavior was observed.  

A. Oxidation of Zirconium Cathode 
To enhance the melting point and reduce the erosion of the cathode, refractory oxide layer is required to be 

formed on the zirconium. The existing constrictor type arc-heater was used for the oxidation. Figure 10 shows the 
oxidation system. Operational conditions of the arc-heater were 6 slm of argon, 1.5 slm of oxygen, 1.0 kW of input 
power and 70 Pa of ambient pressure. A target cathode was set on a movable stage. After the plume became stable, 
the cathode was moved to 60 mm from the nozzle exit where number of atomic oxygen was thought to be largest in 
the plume by the previous measurement. The cathode was exposed to the plume for ten minutes and then cooled off 
in the vacuum chamber filled with oxygen. Figure 11 shows the cathode before and after oxidation. As seen in this 
figure, the silver zirconium cathode became black and then its surface was thought to be oxidized.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

)   

                                                                                                    
 F

a

B. Operational Behavior 
Figure 12 shows a photograph of zirconium cathode arc-heater

those in the hollow cathode case. Although the oxide ceramic 
discharge could be successfully ignited and sustained. This is bec
increase in temperature during the ignition. Even if the oxygen was
operation shown in the figure could be kept more than twenty minute

Figure 13 shows zirconium cathodes before and after twenty min
2 mm and reduced smaller than that of tungsten cathode. Since th
tungsten one, there is much room for improvement of cooling desig
or axial injection.  
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Figure 12. Photo of zirconia cathode
arc-heater plume 

Figure 13. Zircon
and after twenty mi

IV. Conclusion 
A hollow cathode arc-heater was developed and number density distributions

translational temperature distributions in the plume were measured by laser absorpti
oxygen dissociation was enhanced one order higher than that in a constrictor type a
operational time was limited in less than ten minutes due to the severe cathode eros
covered with oxide ceramic layer, stable operational time could be prolonged more tha
erosion was reduced. 
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