Plasma Density Fluctuation inside a Hollow Anode in an Anode-layer Hall Thruster

Shigeru Yokota1, Kimiya Komurasaki2, and Yoshihiro Arakawa.3
The University of Tokyo, Tokyo, 113-8656, Japan

Electrical sheath structure and plasma dynamics inside a hollow anode are numerically computed using a fully kinetic 2D3V Particle-in-Cell (PIC) / Direct Simulation Monte Carlo (DSMC) code. By treating electrons and ions as particles, temporal and spatial variations of the non-neutral plasma near the anode surface were analyzed. The code was verified in terms of the neutral decay time and discharge current waveform. The simulation results show that in the stable region, which corresponds to the low magnetic flux density case, electrons penetrated deeply into the anode hollow. Then, an ion sheath is created on the anode surface due to the high ionization rate in the hollow. The propellant utilization by the anode exit is estimated at 45%. In the “ionization oscillation” region, which corresponds to the high magnetic flux density case, an ion sheath and electron sheath appeared alternately. An electron sheath was formed in the vicinity of the anode surface because of the lack of electron density for sustaining discharge.

Nomenclature

- \( B \) = magnetic flux density
- \( D \) = anode hollow width
- \( e \) = electric charge
- \( E \) = electric field strength
- \( I_d \) = discharge current
- \( m \) = particle mass
- \( n \) = number density
- \( t \) = time
- \( V_d \) = discharge voltage
- \( Z \) = distance between anode tip and channel exit
- \( \varepsilon_0 \) = free space permeability
- \( \phi \) = space potential
- \( \nu \) = collision frequency
- \( r, z, \theta \) = cylindrical coordinate

I. Introduction

Ionization oscillation in anode layer hall thrusters would be one of the serious problems to be overcome. A hollow anode is commonly used to stabilize the discharge for these thrusters.1,3 However, the mechanism of discharge stabilization using a hollow anode is still unknown and optimization of anode design has not been done.

The goal of our study is to model the sheath structure on the electrode, which has a great effect on the stable discharge of anode layer hall thrusters, and to find out optimum anode design. However, it would be very difficult to measure plasma potential and density inside a hollow anode because plasma density is expected very small and the plasma is electrically non-neutral.

In this study, the structure of electrical sheath inside a hollow anode was numerically simulated using the fully kinetic 2D3V Particle-in-Cell (PIC) and Direct Simulation Monte Carlo (DSMC) methodologies.4-8 The results are compared with the measurement using a 1-kW class anode layer hall thruster.

1 Graduate student, Department of Aeronautics and Astronautics, Student Member AIAA.
2 Associate Professor, Department of Advanced Energy, Member AIAA.
3 Professor, Department of Aeronautics and Astronautics, Member AIAA.
II. Discharge Current Oscillation

The University of Tokyo anode layer hall thruster has a hollow anode as shown in Fig. 1. It has two guard rings made of stainless steel kept at the cathode potential. The inner and outer diameters of the rings are 48mm and 62mm, respectively. Magnetic flux density is variable by changing the current of a solenoid coil set at the center of the thruster. Xenon is used as a propellant.

Figure 1. The University of Tokyo Anode Layer Hall Thruster.

A photograph of the hollow anode is shown in Fig. 2. It has an annular hollow anode made of copper. $Z$ denotes the distance between the channel exit and the anode tip, and $D$ does the width of anode hollow.

Figure 2. A hollow anode and an acceleration channel.

Figure 3 shows measured oscillation amplitude $\Delta$ of the discharge current for $Z=1$–4mm and $D=1$–3mm. The amplitude was defined as,

$$\Delta = \sqrt{\int_0^T (I_d - I_0)^2 dt}$$  \hspace{1cm} (1)

The oscillation amplitude was sensitive to the magnetic flux density $B$ and threshold for stable discharge was about 11–15mT.

Figure 3. Oscillation amplitude. propellant flow rate $1.0A_{eq}=1.37mg/s$, discharge voltage 400V.

Figure 4. Averaged discharge current and oscillation amplitude. propellant flow rate $1.0A_{eq}=1.37mg/s$, discharge voltage 250V. $D=3mm$, $Z=2mm$. 

American Institute of Aeronautics and Astronautics
Figure 4 shows the time-averaged discharge current $I_d$ and $B$ for a certain operation condition. Although the oscillation is small at $B<14\text{mT}$, the thrust efficiency is poor because of large electron backflow current in this range of $B$. Therefore, the desirable operation condition is limited in a quite narrow range of $B$.

III. Computation Method

A. Computational models and assumptions

Both electrons and ions are treated as a particle. In the code, $10^6$-$10^9$ of real particles are regarded as one macro-particle and treated kinetically. Only singly charged ionization is considered and mass ratio $m_e/m_n$ is decreased from $4\times10^{-6}$ to $1/100$, to speed up the calculation.

Figure 5 shows the flow chart of calculation. Electric and magnetic forces are implemented via the PIC method and collisions are via the DSMC method. The plasma potential $\phi$ is calculated using the Poisson’s equation as,

$$\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial \phi}{\partial r} \right) = -\frac{e}{\varepsilon_0} (n_i-n_e)$$

(2)

Here, $r$ and $z$ are the cylindrical coordinates and $n_i$, $n_e$, $e$, $\varepsilon_0$ are the ion and electron number density, electronic charge and electric permeability, respectively.

The three highest frequency collisions; Xe - e$^-$ ionization collision, Xe - e$^-$ excitation collision and e$^-$ - e$^-$ elastic scattering are considered. In addition, the Bohm diffusion coefficient is implemented in terms of the virtual collision frequency as

$$V_{\text{Bohm}} = \frac{1}{16} \frac{eB}{m_e}.$$  \hspace{1cm} (3)

Total collision frequency is defined as

$$V_{\text{total}} = V_{\text{elastic}} + V_{\text{ionization}} + V_{\text{excitation}} + V_{\text{Bohm}}.$$  \hspace{1cm} (4)

The simulation time step is set typically at $1.22\times10^{-11}\text{s}$ based on the Larmor frequency that is one order of magnitude larger than the total collision frequency.

B. Computational grid and boundary conditions

The cylindrical coordinate system $(r, z, \theta)$ was used as shown in Fig. 6. Particle’s position is expressed in two-dimensional space $r$ and $z$, while its velocity is expressed in three-dimensional space. That is, particles move in all directions, but the azimuthal coordinate is always discarded.

An orthogonal computational grid is used. The axial cell length is getting smaller toward the anode in order to observe the sharp density variation in the vicinity of anode exit. The minimum cell length is in the order of the Debye length.

Figure 7 shows the magnetic flux density distribution used in the calculation, which is identical to the actual distribution in the thruster. $B_0$ is variable.

Neutral particles are fed from the base of the anode hollow and assumed to be reflected on the anode surface boundary. Electrons are fed from the channel exit boundary with a $T_e=10\text{eV}$ half-Maxwellian velocity distribution, reflected on the guard ring boundary, and lost on the anode surface boundary, while ions are produced only by ionization collisions in the computational domain, and lost on every boundaries. Ions recombined with electrons on the anode surface return to the channel as neutral particles.
In solving the Poisson’s equation, the Dirichlet condition was given on the anode surface and channel exit boundaries and the Neumann condition on the other boundaries.

### IV. Code Verification and Validation

#### A. Ionization rate

The ionization collision is the most important part of this code. The DSMC result was compared with the deterministic solution. Uniform mixture of electrons and neutral particle in unit volume is assumed. The conservation equations of particles and electron energy \( \varepsilon_e \) are expressed as

\[
\frac{dn_e}{dt} = - \frac{dn_{ion}}{dt} = n_e n_e \left\{ \sigma_{ion} \sqrt{2 \frac{\varepsilon_e}{n_e m_e}} \right\}
\]

\[
\frac{1}{n_e n_e} \frac{d\varepsilon_e}{dt} = -\left\{ \sigma_{ion} \sqrt{2 \frac{\varepsilon_e}{n_e m_e}} \varepsilon_e \right\} - \left\{ \sigma_{exc} \sqrt{2 \frac{\varepsilon_e}{n_e m_e}} \varepsilon_{exc} \right\}
\]

respectively. Subscripts ion and exc denotes ionization collision and excitation collision, respectively. The result is shown in Fig.8.

Figure 9 shows the neutral decay time. It indicates that 200 electrons particles per a cell are necessary to correctly simulate the ionization collisions.

![Figure 6. The coordinate system and computational grid.](image)

![Figure 7. Magnetic flux density distribution assumed in this simulation.](image)

![Figure 8. Comparison between the DSMC simulation and analytical solution.](image)

![Figure 9. Neutral decay time vs. electron particle numbers per cell.](image)
B. Discharge current

Figure 10 shows the computed average discharge current and oscillation amplitude. Although the computed discharge current is relatively smaller than measured current (see Fig. 4), the trend agrees well.

Figure 11 shows the discharge current histories in the case of $B_0=20\text{mT}$. The waveforms well resemble each other, as well as the oscillation frequencies.

Both results indicate that the code is well reproducing the ionization oscillation in the anode-channel region.

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{fig10.png}
\caption{Computed discharge current and oscillation amplitude. propellant flow rate $1.0A_{eq}=1.37\text{mg/s}$, discharge voltage $250V$. $D=3\text{mm}, Z=2\text{mm}$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{fig11.png}
\caption{Computed and measured discharge current histories, $B_0=20\text{mT}$.}
\end{figure}

V. Result and Discussions

A. In low $B$ case

In the case of $B$ lower than threshold magnetic flux density, electrons have a high mobility and easily penetrate into the anode hollow. As shown in Fig. 12, a high-electron-density region exists in the anode hollow. Thereby, ionization occurs mainly there.

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{fig12.png}
\caption{A 2-D distribution of the electron number density, $B_0=15\text{mT}$}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{fig13.png}
\caption{Relation between ion-production current in the anode and the magnetic flux density: propellant flow rate 1.0 $A_{eq}$.}
\end{figure}
Figure 13 shows the relation between the ion-production current in the hollow and applied $B$. The ionization region was swept downstream with $B$, and the ion production current was decreased to 0.45 A in the case of $B_0=15\text{mT}$, the right before the threshold.

Figure 14 shows the 2-D plasma potential distribution. Potential is higher than anode potential in the hollow anode, and no sharp potential drop was observed at the anode exit.

$\text{Fig. 14.} \text{A 2-D distributions of plasma potential, } B_0=15\text{mT}$

$\text{Fig. 15. Plasma potential distribution on the anode exit plane, The difference from the anode potential was normalized by the electron temperature on the middle hollow}$

Figure 15 shows the 1-D potential distribution on the anode exit plane. (See Fig. 14) An ion sheath is formed on the anode surface. However, the sheath drop came to small value with $B$ and vanished in the right before the threshold.

### B. In high $B$ case

When the applied magnetic flux density is higher than the threshold, ionization oscillation occurs. Figure 16 shows the history of the discharge current and the ion-production current in the hollow in the case of $16\text{mT}$, which is right back of the threshold. The average ion-production current is as small as 0.35A.

The potential fluctuated and an ion sheath and an electron sheath appeared alternately on the anode surface. Figures 17 and 18 shows the 2-D plasma potential distribution and the 1-D distribution on the anode exit plane at $t=t_c$ (Fig. 16). The electron sheath appeared for about 80% of the time. This is because of the lack of electron number density on the anode surface was for sustaining stable discharge.

This sheath structure is the same as that of typical anode layer hall thrusters without the hollow anode: The “ionization oscillation” is inevitably induced in an electron sheath on the anode surface.

$\text{Fig. 16. The correlation between the ion-production current in the hollow and discharge current, } B_0=16\text{mT}$.
VI. Conclusion

A fully kinetic PIC-DSMC code successfully reproduced both stable and ionization oscillation modes observed in the experiment.

In the stable mode, this corresponds to the low magnetic flux density case, electrons penetrated deeply into the anode hollow. An ion sheath is created on the anode surface due to the high ionization rate in the hollow. The ion-production current in the hollow was decreased with the magnetic flux density from 0.95 $\text{A}$ to 0.45$\text{A}$ (from 95 to 45 $\%$ of the propellant flow rate). Thereby the sheath drop came to small value with $B$ and vanished in the right before the threshold.

In the ionization oscillation mode, which corresponds to the high magnetic flux density case, ion-production current was decreased as small as 0.35 $\text{A}$ at the right back of the threshold. The electron sheath was formed because of the lack of electron density on the anode surface This electron sheath would be the cause of the “ionization oscillation.”

Acknowledgments

The present work was supported by a Grand-in-Aid for Scientific Research (S), No.16106012 and 21st Century COE Program, “Mechanical System Innovation,” sponsored by the Ministry of Education, Culture, Sports, Science and Technology in Japan.

References